|
|
Line 11: |
Line 11: |
| Let <math>K</math> be the intersection of <math>AC</math> and <math>BE</math>, let <math>L</math> be the intersection of <math>AC</math> and <math>DF</math>, | | Let <math>K</math> be the intersection of <math>AC</math> and <math>BE</math>, let <math>L</math> be the intersection of <math>AC</math> and <math>DF</math>, |
| | | |
− | <svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" | + | <math>\angle PBC=\angle DBA</math>, so <math>AD=CE</math>, and <math>DE//AC</math>. |
− | width="1000px" height="1200px" viewBox="0 0 1000 1200" enable-background="new 0 0 1000 1200" xml:space="preserve">
| + | <math>\angle PDC=\angle BDA</math>, so <math>AB=CF</math>, and <math>AC//BF</math>. |
− | <text transform="matrix(1 0 0 1 219 680.5)" font-family="'MyriadPro-Regular'" font-size="12">A</text>
| + | |
− | <text transform="matrix(1 0 0 1 258.5 666)" font-family="'MyriadPro-Regular'" font-size="12">K</text> | + | <math>\angle PLK=\frac12(\widearc{AD}+\widearc{CF}=\frac12(\widearc{CE}+\widearc{AB}=\angle PKL</math>, so <math>\triangle PKL</math> is an isosceles triangle. |
− | <text transform="matrix(1 0 0 1 296.4033 650.5)" font-family="'MyriadPro-Regular'" font-size="12">L</text> | + | Since <math>AC//BF</math>, so <math>\triangle PBF</math> and <math>\triangle PDE</math> are isosceles triangles. So <math>P</math> is on the angle bisector oof <math>BF</math>, since <math>ABFC</math> is |
− | <text transform="matrix(1 0 0 1 269.1636 696.5)" font-family="'MyriadPro-Regular'" font-size="12">B</text> | + | an isosceles trapezoid, so <math>P</math> is also on the perpendicular bisector of <math>AC</math>. So <math>PA=PC</math>. |
− | <text transform="matrix(1 0 0 1 345.0273 617.2539)" font-family="'MyriadPro-Regular'" font-size="12">C</text> | + | |
− | <text transform="matrix(1 0 0 1 203.353 574.9707)" font-family="'MyriadPro-Regular'" font-size="12">D</text> | + | |
− | <text transform="matrix(1 0 0 1 276.5273 617.5)" font-family="'MyriadPro-Regular'" font-size="12">P</text> | + | ~szhangmath |
− | <text transform="matrix(1 0 0 1 275 540.5)" font-family="'MyriadPro-Regular'" font-size="12">E</text> | |
− | <text transform="matrix(1 0 0 1 325.5 666)" font-family="'MyriadPro-Regular'" font-size="12">F</text> | |
− | <circle fill="none" stroke="#000000" stroke-miterlimit="10" cx="269.164" cy="614.164" r="69.164"/> | |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="230.387" y1="671.441" x2="338.327" y2="620.34"/> | |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="210.979" y1="576.758" x2="278.062" y2="545"/> | |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="269.164" y1="683.327" x2="323.643" y2="656.776"/> | |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="269.164" y1="683.327" x2="278.062" y2="545"/> | |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="210.979" y1="576.758" x2="323.643" y2="656.776"/>
| |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="230.387" y1="671.441" x2="210.979" y2="576.758"/> | |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="210.979" y1="576.758" x2="338.327" y2="620.34"/> | |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="230.387" y1="671.441" x2="269.164" y2="683.327"/> | |
− | <line fill="none" stroke="#ED1C24" stroke-miterlimit="10" stroke-dasharray="2,2" x1="338.327" y1="620.34" x2="278.062" y2="545"/> | |
− | <line fill="none" stroke="#ED1C24" stroke-miterlimit="10" stroke-dasharray="2,2" x1="323.643" y1="656.776" x2="338.327" y2="620.34"/>
| |
− | <line fill="none" stroke="#ED1C24" stroke-miterlimit="10" x1="230.387" y1="671.441" x2="273.177" y2="620.934"/> | |
− | <line fill="none" stroke="#ED1C24" stroke-miterlimit="10" x1="273.177" y1="620.934" x2="338.327" y2="620.34"/> | |
− | <g> | |
− | <g>
| |
− | <path d="M271.5,654c3.224,0,3.224-5,0-5S268.276,654,271.5,654L271.5,654z"/>
| |
− | </g>
| |
− | </g> | |
− | <g> | |
− | <g>
| |
− | <path d="M299.5,641.5c3.224,0,3.224-5,0-5S296.276,641.5,299.5,641.5L299.5,641.5z"/>
| |
− | </g>
| |
− | </g>
| |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="269.164" y1="683.327" x2="338.327" y2="620.34"/>
| |
− | <line fill="none" stroke="#000000" stroke-miterlimit="10" x1="210.979" y1="576.758" x2="269.164" y2="683.327"/>
| |
− | </svg>
| |
| | | |
| ==See Also== | | ==See Also== |
| | | |
| {{IMO box|year=2004|num-b=4|num-a=6}} | | {{IMO box|year=2004|num-b=4|num-a=6}} |
Problem
In a convex quadrilateral , the diagonal bisects neither the angle
nor the angle . The point lies inside and satisfies
Prove that is a cyclic quadrilateral if and only if
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
Let be the intersection of and , let be the intersection of and ,
, so , and .
, so , and .
$\angle PLK=\frac12(\widearc{AD}+\widearc{CF}=\frac12(\widearc{CE}+\widearc{AB}=\angle PKL$ (Error compiling LaTeX. Unknown error_msg), so is an isosceles triangle.
Since , so and are isosceles triangles. So is on the angle bisector oof , since is
an isosceles trapezoid, so is also on the perpendicular bisector of . So .
~szhangmath
See Also