Difference between revisions of "2024 AIME II Problems/Problem 10"

Line 17: Line 17:
  
 
~Bluesoul
 
~Bluesoul
 +
 +
==Solution 3==
 +
 +
Denote by <math>R</math> and <math>r</math> the circumradius and inradius, respectively.
 +
 +
First, we have
 +
\[
 +
r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1)
 +
\]
 +
 +
Second, because <math>AI \perp IO</math>,
 +
\begin{align*}
 +
AI & = AO \cos \angle IAO \\
 +
& = AO \cos \left( 90^\circ - C - \frac{A}{2} \right) \\
 +
& = AO \sin \left( C + \frac{A}{2} \right) \\
 +
& = R \sin \left( C + \frac{180^\circ - B - C}{2} \right) \\
 +
& = R \cos \frac{B - C}{2} .
 +
\end{align*}
 +
 +
Thus,
 +
\begin{align*}
 +
r & = AI \sin \frac{A}{2} \\
 +
& = R \sin \frac{A}{2} \cos \frac{B-C}{2} \hspace{1cm} (2)
 +
\end{align*}
 +
 +
Taking <math>(1) - (2)</math>, we get
 +
\[
 +
4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} .
 +
\]
 +
 +
We have
 +
\begin{align*}
 +
2 \sin \frac{B}{2} \sin \frac{C}{2}
 +
& = - \cos \frac{B+C}{2} + \cos \frac{B-C}{2} .
 +
\end{align*}
 +
 +
Plugging this into the above equation, we get
 +
\[
 +
\cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3)
 +
\]
 +
 +
Now, we analyze Equation (2). We have
 +
\begin{align*}
 +
\frac{r}{R} & = \sin \frac{A}{2} \cos \frac{B-C}{2} \\
 +
& = \sin \frac{180^\circ - B - C}{2} \cos \frac{B-C}{2} \\
 +
& = \cos \frac{B+C}{2} \cos \frac{B-C}{2} \hspace{1cm} (4)
 +
\end{align*}
 +
 +
Solving Equations (3) and (4), we get
 +
\[
 +
\cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm}
 +
\cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5)
 +
\]
 +
 +
Now, we compute <math>AB \cdot AC</math>. We have
 +
\begin{align*}
 +
AB \cdot AC & = 2R \sin C \cdot 2R \sin B \\
 +
& = 2 R^2 \left( - \cos \left( B + C \right) + \cos \left( B - C \right) \right) \\
 +
& = 2 R^2 \left( - \left( 2 \left( \cos \frac{B+C}{2} \right)^2 - 1 \right)
 +
+ \left( 2 \left( \cos \frac{B-C}{2} \right)^2 - 1 \right) \right) \\
 +
& = 6 R r \\
 +
& = \boxed{\textbf{(468) }}
 +
\end{align*}
 +
where the first equality follows from the law of sines, the fourth equality follows from (5).
 +
 +
 +
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 +
 +
==Video Solution==
 +
 +
https://youtu.be/_zxBvojcAQ4
 +
 +
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 +
  
 
==See also==
 
==See also==

Revision as of 15:18, 9 February 2024

Problem

Let $\triangle ABC$ have circumcenter $O$ and incenter $I$ with $\overline{IA}\perp\overline{OI}$, circumradius $13$, and inradius $6$. Find $AB\cdot AC$.

Solution

By Euler's formula $OI^{2}=R(R-2r)$, we have $OI^{2}=13(13-12)=13$. Thus, by the Pythagorean theorem, $AI^{2}=13^{2}-13=156$. Let $AI\cap(ABC)=M$; notice $\triangle AOM$ is isosceles and $\overline{OI}\perp\overline{AM}$ which is enough to imply that $I$ is the midpoint of $\overline{AM}$, and $M$ itself is the midpoint of $II_{a}$ where $I_{a}$ is the $A$-excenter of $\triangle ABC$. Therefore, $AI=IM=MI_{a}=\sqrt{156}$ and \[AB\cdot AC=AI\cdot AI_{a}=3\cdot AI^{2}=\boxed{468}.\]

Note that this problem is extremely similar to 2019 CIME I/14.


Solution 2

Denote $AB=a, AC=b, BC=c$. By the given condition, $\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6$, where $A$ is the area of $\triangle{ABC}$.

Moreover, since $OI\bot AI$, the second intersection of the line $AI$ and $(ABC)$ is the reflection of $A$ about $I$, denote that as $D$. By Fact 5, $DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c$.

Thus, we have $\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c$. Now, we have $\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}$

~Bluesoul

Solution 3

Denote by $R$ and $r$ the circumradius and inradius, respectively.

First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]

Second, because $AI \perp IO$, \begin{align*} AI & = AO \cos \angle IAO \\ & = AO \cos \left( 90^\circ - C - \frac{A}{2} \right) \\ & = AO \sin \left( C + \frac{A}{2} \right) \\ & = R \sin \left( C + \frac{180^\circ - B - C}{2} \right) \\ & = R \cos \frac{B - C}{2} . \end{align*}

Thus, \begin{align*} r & = AI \sin \frac{A}{2} \\ & = R \sin \frac{A}{2} \cos \frac{B-C}{2} \hspace{1cm} (2) \end{align*}

Taking $(1) - (2)$, we get \[ 4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} . \]

We have \begin{align*} 2 \sin \frac{B}{2} \sin \frac{C}{2} & = - \cos \frac{B+C}{2} + \cos \frac{B-C}{2} . \end{align*}

Plugging this into the above equation, we get \[ \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3) \]

Now, we analyze Equation (2). We have \begin{align*} \frac{r}{R} & = \sin \frac{A}{2} \cos \frac{B-C}{2} \\ & = \sin \frac{180^\circ - B - C}{2} \cos \frac{B-C}{2} \\ & = \cos \frac{B+C}{2} \cos \frac{B-C}{2} \hspace{1cm} (4) \end{align*}

Solving Equations (3) and (4), we get \[ \cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5) \]

Now, we compute $AB \cdot AC$. We have \begin{align*} AB \cdot AC & = 2R \sin C \cdot 2R \sin B \\ & = 2 R^2 \left( - \cos \left( B + C \right) + \cos \left( B - C \right) \right) \\ & = 2 R^2 \left( - \left( 2 \left( \cos \frac{B+C}{2} \right)^2 - 1 \right) + \left( 2 \left( \cos \frac{B-C}{2} \right)^2 - 1 \right) \right) \\ & = 6 R r \\ & = \boxed{\textbf{(468) }} \end{align*} where the first equality follows from the law of sines, the fourth equality follows from (5).


~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution

https://youtu.be/_zxBvojcAQ4

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)


See also

2024 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png