Difference between revisions of "2002 AMC 10P Problems/Problem 9"
(Created page with "== Solution 1== == See also == {{AMC10 box|year=2002|ab=P|num-b=8|num-a=10}} {{MAA Notice}}") |
|||
Line 1: | Line 1: | ||
+ | == Problem 9 == | ||
+ | |||
+ | The function <math>f</math> is given by the table | ||
+ | |||
+ | <cmath> | ||
+ | \begin{tabular}{|c||c|c|c|c|c|} | ||
+ | \hline | ||
+ | x & 1 & 2 & 3 & 4 & 5 \\ | ||
+ | \hline | ||
+ | f(x) & 4 & 1 & 3 & 5 & 2 \\ | ||
+ | \hline | ||
+ | \end{tabular} | ||
+ | </cmath> | ||
+ | |||
+ | If <math>u_0=4</math> and <math>u_{n+1} = f(u_n)</math> for <math>n \ge 0</math>, find <math>u_{2002}</math> | ||
+ | |||
+ | <math> | ||
+ | \text{(A) }1 | ||
+ | \qquad | ||
+ | \text{(B) }2 | ||
+ | \qquad | ||
+ | \text{(C) }3 | ||
+ | \qquad | ||
+ | \text{(D) }4 | ||
+ | \qquad | ||
+ | \text{(E) }5 | ||
+ | </math> | ||
+ | |||
== Solution 1== | == Solution 1== | ||
Revision as of 17:42, 14 July 2024
Problem 9
The function is given by the table
If and for , find
Solution 1
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.