Difference between revisions of "2002 AMC 10P Problems/Problem 11"

Line 1: Line 1:
== Problem 12 ==
+
== Problem ==
  
For <math>f_n(x)=x^n</math> and <math>a \neq 1</math> consider
+
Let <math>P(x)=kx^3 + 2k^2x^2+k^3.</math> Find the sum of all real numbers <math>k</math> for which <math>x-2</math> is a factor of <math>P(x).</math>
 
 
<math>\text{I. } (f_{11}(a)f_{13}(a))^{14}</math>
 
 
 
<math>\text{II. } f_{11}(a)f_{13}(a)f_{14}(a)</math>
 
 
 
<math>\text{III. } (f_{11}(f_{13}(a)))^{14}</math>
 
 
 
<math>\text{IV. } f_{11}(f_{13}(f_{14}(a)))</math>
 
 
 
Which of these equal <math>f_{2002}(a)?</math>
 
  
 
<math>
 
<math>
\text{(A) I and II only}
+
\text{(A) }-8
 
\qquad
 
\qquad
\text{(B) II and III only}
+
\text{(B) }-4
 
\qquad
 
\qquad
\text{(C) III and IV only}
+
\text{(C) }0
 
\qquad
 
\qquad
\text{(D) II, III, and IV only}
+
\text{(D) }5
 
\qquad
 
\qquad
\text{(E) all of them}
+
\text{(E) }8
 
</math>
 
</math>
  

Revision as of 17:46, 14 July 2024

Problem

Let $P(x)=kx^3 + 2k^2x^2+k^3.$ Find the sum of all real numbers $k$ for which $x-2$ is a factor of $P(x).$

$\text{(A) }-8 \qquad \text{(B) }-4 \qquad \text{(C) }0 \qquad \text{(D) }5 \qquad \text{(E) }8$

Solution 1

See also

2002 AMC 10P (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png