Difference between revisions of "1997 PMWC Problems/Problem I11"

m (Solution)
Line 5: Line 5:
 
==Solution==
 
==Solution==
  
Let l and w be the length, and width, respectively, of one of the little rectangles.
+
Let <math>l</math> and <math>w</math> be the length, and width, respectively, of one of the small rectangles.
  
 
<math>3w=2l</math>
 
<math>3w=2l</math>
Line 11: Line 11:
 
<math>l=\dfrac{3}{2}w</math>
 
<math>l=\dfrac{3}{2}w</math>
  
<math>6750=\dfrac{15}{2}w^2</math>
+
<math>6750= 5lw = \dfrac{15}{2}w^2</math>
  
 
<math>w=30</math>
 
<math>w=30</math>

Revision as of 20:32, 26 April 2008

Problem

A rectangle ABCD is made up of five small congruent rectangles as shown in the given figure. Find the perimeter, in cm, of ABCD if its area is $6750 cm^2$. ABCD.gif

Solution

Let $l$ and $w$ be the length, and width, respectively, of one of the small rectangles.

$3w=2l$

$l=\dfrac{3}{2}w$

$6750= 5lw = \dfrac{15}{2}w^2$

$w=30$

$l=45$

The perimeter of the big rectangle is

$2(w+l)+6w=330$

See also

1997 PMWC (Problems)
Preceded by
Problem I10
Followed by
Problem I12
I: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
T: 1 2 3 4 5 6 7 8 9 10