Difference between revisions of "2003 AIME I Problems/Problem 4"
Cheetahboy93 (talk | contribs) (Solution 4) |
Cheetahboy93 (talk | contribs) m (→Solution 4) |
||
Line 83: | Line 83: | ||
Finally, we see that <math>n = \boxed{012}.</math> | Finally, we see that <math>n = \boxed{012}.</math> | ||
+ | |||
+ | ~ Cheetahboy28 | ||
== See also == | == See also == |
Revision as of 14:30, 22 September 2024
Problem
Given that and that find
Solution 1
Using the properties of logarithms, we can simplify the first equation to . Therefore,
Now, manipulate the second equation.
By the Pythagorean identities, , and we can substitute the value for from . .
Solution 2
Examining the first equation, we simplify as the following:
With this in mind, examining the second equation, we may simplify as the following (utilizing logarithm properties):
From here, we may divide both sides by and then proceed with the change-of-base logarithm property:
Thus, exponentiating both sides results in . Squaring both sides gives us
Via the Pythagorean Identity, and is simply , via substitution. Thus, substituting these results into the current equation:
Using simple cross-multiplication techniques, we have , and thus . ~ nikenissan
Solution 3
By the first equation, we get that . We can let , . Thus . By the identity , we get that . Solving this, we get . So we have
From here it is obvious that .
~yofro
Solution 4
Let Through basic log properties, we see that Thus, we see that Simplifying, we get:
\begin{align*} \log{(\sin{x}\cos{x})} &= -1 \\ \sin{x}\cos{x} &= 10^{-1} = \frac{1}{10} \end{align*}
Next, we can manipulate the second equation to get:
\begin{align*} \log{(\sin{x} + \cos{x})} &= \frac{1}{2}(\log{n}-1) \\ 2\log{(\sin{x} + \cos{x})} &= \log{n}-1 \\ \log{(\sin{x} + \cos{x})^2} + 1 &= \log{n} \end{align*}
Expanding we get:
\begin{align*} \log{(\sin^2{x} + \cos^2{x} + 2\sin{x}\cos{x})} + 1 &= \log{n} \\ \log{(1 + 2\sin{x}\cos{x})} + 1 &= \log{n} \\ \log{(1 + \frac{2}{10})} + \log{10} &= \log{n} \\ \log{(\frac{12}{10} \cdot 10)} = \log{n} \\ \log{12} = \log{n} \end{align*}
Finally, we see that
~ Cheetahboy28
See also
2003 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.