Difference between revisions of "2007 AMC 10A Problems/Problem 18"

(See also)
Line 2: Line 2:
 
Consider the <math>12</math>-sided polygon <math>ABCDEFGHIJKL</math>, as shown. Each of its sides has length <math>4</math>, and each two consecutive sides form a right angle. Suppose that <math>\overline{AG}</math> and <math>\overline{CH}</math> meet at <math>M</math>. What is the area of quadrilateral <math>ABCM</math>?
 
Consider the <math>12</math>-sided polygon <math>ABCDEFGHIJKL</math>, as shown. Each of its sides has length <math>4</math>, and each two consecutive sides form a right angle. Suppose that <math>\overline{AG}</math> and <math>\overline{CH}</math> meet at <math>M</math>. What is the area of quadrilateral <math>ABCM</math>?
  
{{image}}
+
[[Image:2007-AMC-10A--18.png]]
  
 
<math>\text{(A)}\ \frac {44}{3}\qquad \text{(B)}\ 16 \qquad \text{(C)}\ \frac {88}{5}\qquad \text{(D)}\ 20 \qquad \text{(E)}\ \frac {62}{3}</math>
 
<math>\text{(A)}\ \frac {44}{3}\qquad \text{(B)}\ 16 \qquad \text{(C)}\ \frac {88}{5}\qquad \text{(D)}\ 20 \qquad \text{(E)}\ \frac {62}{3}</math>

Revision as of 09:05, 11 February 2008

Problem

Consider the $12$-sided polygon $ABCDEFGHIJKL$, as shown. Each of its sides has length $4$, and each two consecutive sides form a right angle. Suppose that $\overline{AG}$ and $\overline{CH}$ meet at $M$. What is the area of quadrilateral $ABCM$?

2007-AMC-10A--18.png

$\text{(A)}\ \frac {44}{3}\qquad \text{(B)}\ 16 \qquad \text{(C)}\ \frac {88}{5}\qquad \text{(D)}\ 20 \qquad \text{(E)}\ \frac {62}{3}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions