Difference between revisions of "2020 AMC 10B Problems/Problem 15"

(Problem)
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
skibidi toilet
 
  
 
==Solution 1 (Simulation)==
 
==Solution 1 (Simulation)==

Revision as of 18:18, 16 October 2024

Problem

Solution 1 (Simulation)

Note that cycles exist initially and after each round of erasing.

Let the parentheses denote cycles. It follows that:

  1. Initially, the list has cycles of length $5:$ \[(12345)=12345123451234512345\cdots.\]
  2. To find one cycle after the first round of erasing, we need one cycle of length $\operatorname{lcm}(3,5)=15$ before erasing. So, we first group $\frac{15}{5}=3$ copies of the current cycle into one, then erase: \begin{align*} (12345)&\longrightarrow(123451234512345) \\ &\longrightarrow(12\cancel{3}45\cancel{1}23\cancel{4}51\cancel{2}34\cancel{5}) \\ &\longrightarrow(1245235134). \end{align*} As a quick confirmation, one cycle should have length $15\cdot\left(1-\frac{1}{3}\right)=10$ at this point.
  3. To find one cycle after the second round of erasing, we need one cycle of length $\operatorname{lcm}(4,10)=20$ before erasing. So, we first group $\frac{20}{10}=2$ copies of the current cycle into one, then erase: \begin{align*} (1245235134)&\longrightarrow(12452351341245235134) \\ &\longrightarrow(124\cancel{5}235\cancel{1}341\cancel{2}452\cancel{3}513\cancel{4}) \\ &\longrightarrow(124235341452513). \end{align*} As a quick confirmation, one cycle should have length $20\cdot\left(1-\frac{1}{4}\right)=15$ at this point.
  4. To find one cycle after the third round of erasing, we need one cycle of length $\operatorname{lcm}(5,15)=15$ before erasing. We already have it here, so we erase: \begin{align*} (124235341452513)&\longrightarrow(1242\cancel{3}5341\cancel{4}5251\cancel{3}) \\ &\longrightarrow(124253415251). \end{align*} As a quick confirmation, one cycle should have length $15\cdot\left(1-\frac{1}{5}\right)=12$ at this point.

Since $2019,2020,2021$ are congruent to $3,4,5$ modulo $12,$ respectively, the three digits in the final positions $2019,2020,2021$ are $4,2,5,$ respectively: \[(12\underline{425}3415251).\] Therefore, the answer is $4+2+5=\boxed{\textbf{(D)}\ 11}.$

~MRENTHUSIASM (inspired by TheBeautyofMath)

Solution 2 (Simulation)

After erasing every third digit, the list becomes $1245235134\ldots$ repeated. After erasing every fourth digit from this list, the list becomes $124235341452513\ldots$ repeated. Finally, after erasing every fifth digit from this list, the list becomes $124253415251\ldots$ repeated. Since this list repeats every $12$ digits and $2019,2020,2021$ are $3,4,5$ respectively in $\pmod{12},$ we have that the $2019$th, $2020$th, and $2021$st digits are the $3$rd, $4$th, and $5$th digits respectively. It follows that the answer is $4+2+5= \boxed {\textbf{(D)}\ 11}.$

Solution 3 (Analysis)

Note that cycles exist initially and after each round of erasing.

We will consider one cycle after all three rounds of erasing. Suppose this cycle has length $L$ before any round of erasing. It follows that:

  1. Initially, one cycle has length $5,$ from which $L$ must be divisible by $5.$
  2. After the first round of erasing, one cycle has length $L\left(1-\frac13\right)=\frac23L,$ from which $L$ must be divisible by $3.$
  3. After the second round of erasing, one cycle has length $L\left(1-\frac13\right)\left(1-\frac14\right)=\frac12L,$ from which $L$ must be divisible by $2.$
  4. After the third round of erasing, one cycle has length $L\left(1-\frac13\right)\left(1-\frac14\right)\left(1-\frac15\right)=\frac25L,$ from which $L$ must be divisible by $5.$

The least such positive integer $L$ is $\operatorname{lcm}(5,3,2,5)=30.$ So, there is a repeating pattern for every $30$ digits on the original list. As shown below, the digits erased in the first, second, and third rounds are colored in red, yellow, and green, respectively: [asy] /* Made by MRENTHUSIASM */ size(20cm);  for (real i=2.5; i<30; i+=3) {    fill((i-0.5,0)--(i-0.5,4)--(i+0.5,4)--(i+0.5,0)--cycle,red); }  for (real i=4.5; i<30; i+=6) {    fill((i-0.5,0)--(i-0.5,4)--(i+0.5,4)--(i+0.5,0)--cycle,yellow); }  fill((7,0)--(7,4)--(8,4)--(8,0)--cycle,green); fill((18,0)--(18,4)--(19,4)--(19,0)--cycle,green); fill((27,0)--(27,4)--(28,4)--(28,0)--cycle,green);  for (real i=1; i<5; ++i) {    for (real j=0; j<30; ++j) {       label("$"+string(1+j%5)+"$",(j+0.5,i-0.5));    } }  for (real i=0; i<30; ++i) {    label("$\vdots$",(i+0.5,-1/3)); }  add(grid(30,4,linewidth(1.25))); [/asy] As indicated by the white squares, each group of $30$ digits on the original list has $\frac25\cdot30=12$ digits remaining on the final list.

Since $2019,2020,2021$ are congruent to $3,4,5$ modulo $12,$ respectively, the three digits in the final positions $2019,2020,2021$ are $4,2,5,$ respectively: [asy] /* Made by MRENTHUSIASM */ size(20cm);  for (real i=2.5; i<30; i+=3) {    fill((i-0.5,0)--(i-0.5,1)--(i+0.5,1)--(i+0.5,0)--cycle,red); }  for (real i=4.5; i<30; i+=6) {    fill((i-0.5,0)--(i-0.5,1)--(i+0.5,1)--(i+0.5,0)--cycle,yellow); }  fill((7,0)--(7,1)--(8,1)--(8,0)--cycle,green); fill((18,0)--(18,1)--(19,1)--(19,0)--cycle,green); fill((27,0)--(27,1)--(28,1)--(28,0)--cycle,green);  for (real j=0; j<30; ++j) {    label("$"+string(1+j%5)+"$",(j+0.5,0.5)); }  draw((3.5,-1.25)--(3.5,-0.2),linewidth(1.25),EndArrow); draw((6.5,-1.25)--(6.5,-0.2),linewidth(1.25),EndArrow); draw((9.5,-1.25)--(9.5,-0.2),linewidth(1.25),EndArrow);  add(grid(30,1,linewidth(1.25))); [/asy] Therefore, the answer is $4+2+5=\boxed{\textbf{(D)}\ 11}.$

~MRENTHUSIASM

Solution 4 (Analysis)

As the LCM of $3$, $4$, and $5$ is $60$, let us look at a $60$-digit block of original numbers (many will be erased by Steve). After he erases every third number $\left(\dfrac{1}{3}\right)$, then every fourth number of what remains $\left(\dfrac{1}{4}\right)$, then every fifth number of what remains $\left(\dfrac{1}{5}\right)$, we are left with $\dfrac{2}{3} \cdot \dfrac{3}{4} \cdot \dfrac{4}{5} \cdot 60=24$ digits from this $60$-digit block. $2019 \equiv 3 \pmod {24}, 2020 \equiv 4 \pmod {24}, 2021 \equiv 5 \pmod {24}$. Writing out the first few digits of this sequence, we have $\underbrace{1}_{\#1}, \underbrace{2}_{\#2}, \cancel{3}, \underbrace{4}_{\#3}, \cancel{5}, \cancel{1}, \underbrace{2}_{\#4}, \cancel{3}, \cancel{4}, \underbrace{5}_{\#5}, \dots$. Therefore, our answer is $4+2+5=\boxed{\textbf{(D)}\ 11}$.

~BakedPotato66

Solution 5

Lemma: Given a sequence $a_1, a_2, a_3, \cdots$, and an positive integer $k>2$. If we erase every $k$th item in this sequence, and we name $b_1, b_2, b_3, \cdots$ as the remaining sequence. Then we have \[b_{(k-1)m+1}=a_{km+1}, b_{(k-1)m+2}=a_{km+2}, \cdots, b_{(k-1)m+k-1}=a_{km+k-1}.\]

Proof: For $a_{km+j}$ with some $j, 1\le j\le k-1$, we will have $m$ items removed before this item, so it becomes $b_{(k-1)m+j}$ in the new sequence. Hence, we have $b_{(k-1)m+j}=a_{km+j}$.

If we start with $a_1, a_2, a_3, \cdots,$ and let $b_1, b_2, \cdots$ be the sequence after removing all the indexes that are multiples of $3$. Then, we have $b_{2n+1}=a_{3n+1},b_{2n+2}=a_{3n+2}$.

Similarly, if we start with $b_1, b_2, b_3, \cdots,$ and remove all multiples of $4$, and get $c_1, c_2, \cdots$ We have $c_{3n+1}=b_{4n+1},c_{3n+2}=b_{4n+2},  c_{3n+3}=b_{4n+3}$.

If we start with $c_1, c_2, \cdots$ and $d_1, d_2, \cdots$ are remove all multiples of $5$, we get \[d_{4n+1}=c_{5n+1}, d_{4n+2}=c_{5n+2}, d_{4n+3}=c_{5n+3}, d_{4n+4}=c_{5n+4}.\] Therefore, \begin{align*} d_{2019}&=d_{4\cdot504+3}=c_{5\cdot 504+3}=c_{2523}=c_{3\cdot 840+3}=b_{4\cdot 840+3}=b_{3363}=b_{2\cdot 1681+1}=a_{3\cdot 1681+1}=a_{5044}=a_4=4, \\ d_{2020}&=d_{4\cdot504+4}=c_{5\cdot 504+4}=c_{2524}=c_{3\cdot841+1}=b_{4\cdot841+1}=b_{3365}=b_{2\cdot1682+1}=a_{3\cdot 1682+1}=a_{5047}=a_2=2, \\ d_{2021}&=d_{4\cdot505+1}=c_{5\cdot505+1}=c_{2526}=c_{3\cdot841+3}=b_{4\cdot841+3}=b_{3367}=b_{2\cdot1683+1}=a_{3\cdot1683+1}=a_{5050}=a_5=5, \end{align*} and the answer is $4+2+5=\boxed{\textbf{(D)}\ 11}$.

~szhangmath

Video Solution (HOW TO CRITICALLY THINK!!!)

https://youtu.be/yDX4h6YSY8Q

~Education, the Study of Everything

Video Solution

https://youtu.be/t6yjfKXpwDs?t=1004

See Also

2020 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png