Difference between revisions of "2024 AMC 12B Problems/Problem 17"

(Solution 1)
m (Solution 1)
Line 8: Line 8:
 
==Solution 1==
 
==Solution 1==
  
-10 <math>\leq</math> a, b <math>\leq</math> 10 , each of a,b has 21 choices
+
<math>-10 \leq a, b \leq 10</math>, each of <math>a,b</math> has <math>21</math> choices
  
 
Applying Vieta,  
 
Applying Vieta,  
Line 18: Line 18:
 
<math> x_1 \cdot x_2 + x_1 \cdot x_3  + x_3 \cdot x_2  = b</math>
 
<math> x_1 \cdot x_2 + x_1 \cdot x_3  + x_3 \cdot x_2  = b</math>
  
Case:
+
Cases:
  
 +
(1)  <math> (x_1,x_2,x_3)  = (-1,1,6) , b = -1, a=-6</math>  valid
  
(1)  <math> (x_1,x_2,x_3) </math> = (-1,1,6) , b = -1, a=-6 valid  
+
(2)  <math> (x_1,x_2,x_3) = ( 1,2,-3) , b = -7, a=0</math> valid  
  
(2)  <math> (x_1,x_2,x_3) </math> = ( 1,2,-3) , b = -7, a=0 valid  
+
(3)  <math> (x_1,x_2,x_3) = (1,-2,3) , b = -7, a=2</math> valid  
  
(3)  <math> (x_1,x_2,x_3) </math> = (1,-2,3) , b = -7, a=2 valid  
+
(4)  <math> (x_1,x_2,x_3) = (-1,2,3) , b = 1, a=4</math> valid  
  
(4)  <math> (x_1,x_2,x_3) </math> = (-1,2,3) , b = 1, a=4  valid
+
(5)  <math> (x_1,x_2,x_3) = (-1,-2,-3) , b = 11</math> invalid
  
(5) <math> (x_1,x_2,x_3) </math> = (-1,-2,-3) , b = 11 invalid
+
the total event space is <math>21  \cdot</math> (21- 1)<math> (choice of select a</math>\cdot<math>choice of selecting b given no-replacement)  
  
the total event space is 21 (choice of select a) <math>\cdot</math> (21- 1) (choice of selecting b given no-replacement)
+
hence, our answer is </math>\frac{4}{21 \cdot 20}<math> =  </math>\boxed{\textbf{(C) }\frac{1}{105}}$
 
 
hence, probability = <math>\frac{4}{21 \cdot 20}</math> =  <math>\boxed{\textbf{(C) }\frac{1}{105}}</math>
 
 
   
 
   
 
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso]
 
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso]

Revision as of 18:27, 16 November 2024

Problem 17

Integers $a$ and $b$ are randomly chosen without replacement from the set of integers with absolute value not exceeding $10$. What is the probability that the polynomial $x^3 + ax^2 + bx + 6$ has $3$ distinct integer roots?

$\textbf{(A) } \frac{1}{240} \qquad \textbf{(B) } \frac{1}{221} \qquad \textbf{(C) } \frac{1}{105} \qquad \textbf{(D) } \frac{1}{84} \qquad \textbf{(E) } \frac{1}{63}$.

Solution

Solution 1

$-10 \leq a, b \leq 10$, each of $a,b$ has $21$ choices

Applying Vieta,

$x_1 \cdot x_2  \cdot x_3  = -6$

$x_1 + x_2+ x_2 = -a$

$x_1 \cdot x_2 + x_1 \cdot x_3  + x_3 \cdot x_2  = b$

Cases:

(1) $(x_1,x_2,x_3)  = (-1,1,6) , b = -1, a=-6$ valid

(2) $(x_1,x_2,x_3)  = ( 1,2,-3) , b = -7, a=0$ valid

(3) $(x_1,x_2,x_3)  = (1,-2,3) , b = -7, a=2$ valid

(4) $(x_1,x_2,x_3)  = (-1,2,3) , b = 1, a=4$ valid

(5) $(x_1,x_2,x_3)  = (-1,-2,-3) , b = 11$ invalid

the total event space is $21  \cdot$ (21- 1)$(choice of select a$\cdot$choice of selecting b given no-replacement)

hence, our answer is$ (Error compiling LaTeX. Unknown error_msg)\frac{4}{21 \cdot 20}$=$\boxed{\textbf{(C) }\frac{1}{105}}$

~luckuso

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png