Difference between revisions of "2008 AMC 12A Problems/Problem 20"
(New page: ==Problem== Triangle <math>ABC</math> has <math>AC=3</math>, <math>BC=4</math>, and <math>AB=5</math>. Point <math>D</math> is on <math>\overline{AB}</math>, and <math>\overline{CD}</math>...) |
(moved from #21) |
||
Line 3: | Line 3: | ||
<math>\textbf{(A)}\ \frac{1}{28}\left(10-\sqrt{2}\right) \qquad \textbf{(B)}\ \frac{3}{56}\left(10-\sqrt{2}\right) \qquad \textbf{(C)}\ \frac{1}{14}\left(10-\sqrt{2}\right) \qquad \textbf{(D)}\ \frac{5}{56}\left(10-\sqrt{2}\right) \\ \textbf{(E)}\ \frac{3}{28}\left(10-\sqrt{2}\right)</math> | <math>\textbf{(A)}\ \frac{1}{28}\left(10-\sqrt{2}\right) \qquad \textbf{(B)}\ \frac{3}{56}\left(10-\sqrt{2}\right) \qquad \textbf{(C)}\ \frac{1}{14}\left(10-\sqrt{2}\right) \qquad \textbf{(D)}\ \frac{5}{56}\left(10-\sqrt{2}\right) \\ \textbf{(E)}\ \frac{3}{28}\left(10-\sqrt{2}\right)</math> | ||
+ | |||
+ | == Solution == | ||
+ | <center><asy> | ||
+ | import olympiad; | ||
+ | size(300); | ||
+ | defaultpen(0.8); | ||
+ | pair C=(0,0),A=(0,3),B=(4,0),D=(4-2.28571,1.71429); | ||
+ | pair O=incenter(A,C,D), P=incenter(B,C,D); | ||
+ | picture p = new picture; | ||
+ | draw(p,Circle(C,0.2)); draw(p,Circle(B,0.2)); | ||
+ | clip(p,B--C--D--cycle); | ||
+ | add(p); | ||
+ | draw(A--B--C--D--C--cycle); | ||
+ | draw(incircle(A,C,D)); | ||
+ | draw(incircle(B,C,D)); | ||
+ | dot(O);dot(P); | ||
+ | label("\(A\)",A,W); | ||
+ | label("\(B\)",B,E); | ||
+ | label("\(C\)",C,W); | ||
+ | label("\(D\)",D,NE); | ||
+ | label("\(O_A\)",O,W); | ||
+ | label("\(O_B\)",P,W); | ||
+ | label("\(3\)",(A+C)/2,W); | ||
+ | label("\(4\)",(B+C)/2,S); | ||
+ | label("\(\frac{15}{7}\)",(A+D)/2,NE); | ||
+ | label("\(\frac{20}{7}\)",(B+D)/2,NE); | ||
+ | label("\(45^{\circ}\)",(.2,.1),E); | ||
+ | label("\(\sin \theta = \frac{3}{5}\)",B-(.2,-.1),W); | ||
+ | </asy></center> | ||
+ | |||
+ | By the [[Angle Bisector Theorem]], | ||
+ | <cmath>\frac{BD}{4} = \frac{5-BD}{3} \Longrightarrow BD = \frac{20}7</cmath> | ||
+ | By [[Law of Sines]] on <math>\triangle BCD</math>, | ||
+ | <cmath>\frac{BD}{\sin 45^{\circ}} = \frac{CD}{\sin \angle B} \Longrightarrow \frac{20/7}{\sqrt{2}/2} = \frac{CD}{3/5} \Longrightarrow CD=\frac{12\sqrt{2}}{7}</cmath> | ||
+ | Since the area of a triangle satisfies <math>[\triangle]=rs</math>, where <math>r = </math> the [[inradius]] and <math>s =</math> the [[semiperimeter]], we have | ||
+ | <cmath>\frac{r_A}{r_B} = \frac{[ACD] \cdot s_B}{[BCD] \cdot s_A}</cmath> | ||
+ | <!--Using any of various formulas for triangle area, we find the area <math>[BCD]</math> to be | ||
+ | <cmath>[BCD] = \frac{1}{2} (\sin \angle CBD) \cdot (BD) \cdot (CD) = \frac 12 \cdot \frac 35 \cdot \frac{20}{7} \cdot 4 = \frac{24}{7}</cmath> | ||
+ | and | ||
+ | <cmath>[ACD] = [ABC] - [BCD] = \frac 12 (3)(4) - \frac{24}{7} = \frac{18}{7}</cmath>--> | ||
+ | Since <math>\triangle ACD</math> and <math>\triangle BCD</math> share the [[altitude]] (to <math>\overline{AB}</math>), their areas are the ratio of their bases, or <cmath>\frac{[ACD]}{[BCD]} = \frac{AD}{BD} = \frac{3}{4}</cmath> | ||
+ | The semiperimeters are <math>s_A = \left({3 + \frac{15}{7} + \frac{12\sqrt{2}}{7}\right)\left/\right.2 = \frac{18+6\sqrt{2}}{7}</math> and <math>s_B = \frac{24+ 6\sqrt{2}}{7}</math>. Thus, | ||
+ | <cmath>\begin{align*} | ||
+ | \frac{r_A}{r_B} &= \frac{[ACD] \cdot s_B}{[BCD] \cdot s_A} = \frac{3}{4} \cdot \frac{(24+ 6\sqrt{2})/7}{(18+6\sqrt{2})/7} \\ | ||
+ | &= \frac{3(4+\sqrt{2})}{4(3+\sqrt{2})} \cdot \left(\frac{3-\sqrt{2}}{3-\sqrt{2}}\right) = \frac{3}{28}(10-\sqrt{2}) \Rightarrow \mathrm{(E)}\qquad \blacksquare \end{align*}</cmath> | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC12 box|year=2008|num-b=19|num-a=21|ab=A}} |
Revision as of 21:41, 19 February 2008
Problem
Triangle has , , and . Point is on , and bisects the right angle. The inscribed circles of and have radii and , respectively. What is ?
Solution
By the Angle Bisector Theorem, By Law of Sines on , Since the area of a triangle satisfies , where the inradius and the semiperimeter, we have Since and share the altitude (to ), their areas are the ratio of their bases, or The semiperimeters are $s_A = \left({3 + \frac{15}{7} + \frac{12\sqrt{2}}{7}\right)\left/\right.2 = \frac{18+6\sqrt{2}}{7}$ (Error compiling LaTeX. Unknown error_msg) and . Thus,
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |