Difference between revisions of "2007 AMC 12B Problems/Problem 24"

(Added "See Also")
(rewrote to make it more clear and short)
Line 8: Line 8:
 
Combining the fraction, <math>\frac{9a^2 + 14b^2}{9ab}</math> must be an integer.
 
Combining the fraction, <math>\frac{9a^2 + 14b^2}{9ab}</math> must be an integer.
  
Since the denominator contains a factor of <math>9</math>,
+
Since the denominator contains a factor of <math>9</math>, <math>9 | 9a^2 + 14b^2 \quad\Longrightarrow\quad 9 | b^2 \quad\Longrightarrow\quad 3 | b</math>
  
<math>9 | 9a^2 + 14b^2</math>
+
Rewriting <math>b</math> as <math>b = 3n</math> for some positive integer <math>n</math>, we can rewrite the fraction as <math>\frac{a^2 + 14n^2}{3an}</math>
  
<math>9 | b^2</math>
+
Since the denominator now contains a factor of <math>n</math>, we get <math>n | a^2 + 14n^2 \quad\Longrightarrow\quad n | a^2</math>.
  
<math>3 | b</math>
+
But since <math>1=gcd(a,b)=gcd(a,3n)=gcd(a,n)</math>, we must have <math>n=1</math>, and thus <math>b=3</math>.
  
Rewriting <math>b</math> as <math>b = 3n</math> for some positive integer <math>n</math>, we can rewrite the fraction <math>\frac{a^2 + 14n^2}{3an}</math>
+
For <math>b=3</math> the original fraction simplifies to <math>\frac{a^2 + 14}{3a}</math>.
  
Since the denominator now contains a factor of <math>n</math>,
+
For that to be an integer, <math>a</math> must divide <math>14</math>, and therefore we must have <math>a\in\{1,2,7,14\}</math>. Each of these values does indeed yield an integer.
  
<math>n | a^2 + 14n^2</math>
+
Thus there are four solutions: <math>(1,3)</math>, <math>(2,3)</math>, <math>(7,3)</math>, <math>(14,3)</math> and the answer is <math>\mathrm {(A)}</math>
 
 
<math>n | a^2</math>
 
 
 
<math>n | a</math>
 
 
 
Rewriting <math>a</math> as <math>a = mn</math> for some positive integer <math>m</math>, we can rewrite the fraction again as <math>\frac{m^2 + 14}{3m}</math>
 
 
 
Since the denominator contains <math>m</math>,
 
 
 
<math>m | m^2 + 14</math>
 
 
 
<math>m | 14</math>
 
 
 
<math>m \in (1,2,7,14)</math>
 
 
 
Checking back to the fraction, all of these <math>m</math> do indeed yield integers.
 
 
 
Now, returning to <math>a</math> and <math>b</math>
 
 
 
<math>a \in (n,2n,7n,14n)</math> and
 
<math>b = 3n</math>
 
 
 
Since <math>gcd(a,b) = 1</math>, <math>n</math> must be <math>1</math>.
 
This yields four possible pairs
 
<math>(1,3)</math>, <math>(2,3)</math>, <math>(7,3)</math>, <math>(14,3)</math>
 
 
 
<math>4 \Rightarrow \mathrm {(A)}</math>
 
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2007|ab=B|num-b=23|num-a=25}}
 
{{AMC12 box|year=2007|ab=B|num-b=23|num-a=25}}

Revision as of 14:13, 5 January 2009

Problem 24

How many pairs of positive integers $(a,b)$ are there such that $gcd(a,b)=1$ and \[\frac{a}{b}+\frac{14b}{9a}\] is an integer?

$\mathrm {(A)} 4$ $\mathrm {(B)} 6$ $\mathrm {(C)} 9$ $\mathrm {(D)} 12$ $\mathrm {(E)} \text{infinitely many}$

Solution

Combining the fraction, $\frac{9a^2 + 14b^2}{9ab}$ must be an integer.

Since the denominator contains a factor of $9$, $9 | 9a^2 + 14b^2 \quad\Longrightarrow\quad 9 | b^2 \quad\Longrightarrow\quad 3 | b$

Rewriting $b$ as $b = 3n$ for some positive integer $n$, we can rewrite the fraction as $\frac{a^2 + 14n^2}{3an}$

Since the denominator now contains a factor of $n$, we get $n | a^2 + 14n^2 \quad\Longrightarrow\quad n | a^2$.

But since $1=gcd(a,b)=gcd(a,3n)=gcd(a,n)$, we must have $n=1$, and thus $b=3$.

For $b=3$ the original fraction simplifies to $\frac{a^2 + 14}{3a}$.

For that to be an integer, $a$ must divide $14$, and therefore we must have $a\in\{1,2,7,14\}$. Each of these values does indeed yield an integer.

Thus there are four solutions: $(1,3)$, $(2,3)$, $(7,3)$, $(14,3)$ and the answer is $\mathrm {(A)}$

See Also

2007 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions