Difference between revisions of "2008 AMC 12A Problems/Problem 22"
m (fix asymptote) |
({{dup}}) |
||
Line 1: | Line 1: | ||
+ | {{duplicate|[[2008 AMC 12A Problems|2008 AMC 12A #22]] and [[2008 AMC 10A Problems/Problem 25|2004 AMC 10A #25]]}} | ||
==Problem== | ==Problem== | ||
A round table has radius <math>4</math>. Six rectangular place mats are placed on the table. Each place mat has width <math>1</math> and length <math>x</math> as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length <math>x</math>. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is <math>x</math>? | A round table has radius <math>4</math>. Six rectangular place mats are placed on the table. Each place mat has width <math>1</math> and length <math>x</math> as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length <math>x</math>. Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is <math>x</math>? | ||
Line 20: | Line 21: | ||
==Solution== | ==Solution== | ||
+ | === Solution 1 (trigonometry) === | ||
Let one of the mats be <math>ABCD</math>, and the center be <math>O</math> as shown: | Let one of the mats be <math>ABCD</math>, and the center be <math>O</math> as shown: | ||
Line 52: | Line 54: | ||
Since <math>x</math> must be positive, <math>x = \frac{3\sqrt{7}-\sqrt{3}}{2} \Rightarrow C</math>. | Since <math>x</math> must be positive, <math>x = \frac{3\sqrt{7}-\sqrt{3}}{2} \Rightarrow C</math>. | ||
+ | |||
+ | === Solution 2 (without trigonometry) === | ||
+ | {{solution}} | ||
==See Also== | ==See Also== | ||
{{AMC12 box|year=2008|num-b=21|num-a=23|ab=A}} | {{AMC12 box|year=2008|num-b=21|num-a=23|ab=A}} | ||
+ | {{AMC10 box|year=2008|num-b=24|after=Last question|ab=A}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] | ||
+ | [[Category:Introductory Trigonometry Problems]] |
Revision as of 08:47, 25 April 2008
- The following problem is from both the 2008 AMC 12A #22 and 2004 AMC 10A #25, so both problems redirect to this page.
Contents
Problem
A round table has radius . Six rectangular place mats are placed on the table. Each place mat has width and length as shown. They are positioned so that each mat has two corners on the edge of the table, these two corners being end points of the same side of length . Further, the mats are positioned so that the inner corners each touch an inner corner of an adjacent mat. What is ?
Solution
Solution 1 (trigonometry)
Let one of the mats be , and the center be as shown:
Since there are mats, is equilateral. So, . Also, .
By the Law of Cosines: .
Since must be positive, .
Solution 2 (without trigonometry)
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See Also
2008 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2008 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |