Difference between revisions of "2002 AIME II Problems/Problem 4"
I like pie (talk | contribs) m |
I like pie (talk | contribs) (Added problem, solution still needed) |
||
Line 1: | Line 1: | ||
− | |||
== Problem == | == Problem == | ||
+ | Patio blocks that are hexagons <math>1</math> unit on a side are used to outline a garden by placing the blocks edge to edge with <math>n</math> on each side. The diagram indicates the path of blocks around the garden when <math>n=5</math>. | ||
+ | |||
+ | [[Image:AIME 2002 II Problem 4.gif]] | ||
+ | |||
+ | If <math>n=202</math>, then the area of the garden enclosed by the path, not including the path itself, is <math>m\left(\sqrt3/2\right)</math> square units, where <math>m</math> is a positive integer. Find the remainder when <math>m</math> is divided by <math>1000</math>. | ||
== Solution == | == Solution == |
Revision as of 13:16, 19 April 2008
Problem
Patio blocks that are hexagons unit on a side are used to outline a garden by placing the blocks edge to edge with on each side. The diagram indicates the path of blocks around the garden when .
If , then the area of the garden enclosed by the path, not including the path itself, is square units, where is a positive integer. Find the remainder when is divided by .
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
2002 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |