Difference between revisions of "1999 AHSME Problems/Problem 30"

(solution)
 
(Solution)
Line 13: Line 13:
 
<cmath>x^3 + y^3 + z^3 - 3xyz = \frac12\cdot(x + y + z)\cdot((x - y)^2 + (y - z)^2 + (z - x)^2)</cmath>
 
<cmath>x^3 + y^3 + z^3 - 3xyz = \frac12\cdot(x + y + z)\cdot((x - y)^2 + (y - z)^2 + (z - x)^2)</cmath>
  
Setting <math>x = m,y = n,z = - 33</math>, we have that either <math>m + n - 33 = 0</math> or <math>m = m = - 33</math> (by the [[Trivial Inequality]]). Thus, there are <math>35 \Longrightarrow \mathrm{(D)}</math> solutions satisfying <math>mn \ge 0</math>.  
+
Setting <math>x = m,y = n,z = - 33</math>, we have that either <math>m + n - 33 = 0</math> or <math>m = n = - 33</math> (by the [[Trivial Inequality]]). Thus, there are <math>35 \Longrightarrow \mathrm{(D)}</math> solutions satisfying <math>mn \ge 0</math>.
  
 
== See also ==
 
== See also ==

Revision as of 10:45, 8 August 2011

Problem

The number of ordered pairs of integers $(m,n)$ for which $mn \ge 0$ and

$m^3 + n^3 + 99mn = 33^3$

is equal to

$\mathrm{(A) \ }2 \qquad \mathrm{(B) \ } 3\qquad \mathrm{(C) \ } 33\qquad \mathrm{(D) \ }35 \qquad \mathrm{(E) \ } 99$

Solution

We recall the factorization (see elementary symmetric sums)

\[x^3 + y^3 + z^3 - 3xyz = \frac12\cdot(x + y + z)\cdot((x - y)^2 + (y - z)^2 + (z - x)^2)\]

Setting $x = m,y = n,z = - 33$, we have that either $m + n - 33 = 0$ or $m = n = - 33$ (by the Trivial Inequality). Thus, there are $35 \Longrightarrow \mathrm{(D)}$ solutions satisfying $mn \ge 0$.

See also

1999 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 29
Followed by
Last problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions