Difference between revisions of "1989 AHSME Problems/Problem 29"
m (→See also) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
What is the value of the sum <math>S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?</math> | What is the value of the sum <math>S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?</math> | ||
+ | |||
+ | {{incomplete|answers}} | ||
==Solution== | ==Solution== |
Revision as of 14:58, 31 August 2008
Problem
What is the value of the sum
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
See also
1989 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 28 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |