Difference between revisions of "2000 AMC 10 Problems/Problem 15"

(New page: <math>ab=a-b</math> <math>\frac{a}{b}+\frac{b}{a}-ab=\frac{a^2+b^2}{ab}-ab=\frac{-a^2b^2+a^2+b^2}{ab}</math> <math>\frac{-a^2+2ab-b^2+a^2+b^2}{ab}=2</math>. E.)
 
m
Line 1: Line 1:
 +
==Problem==
 +
 +
==Solution==
 +
 
<math>ab=a-b</math>
 
<math>ab=a-b</math>
  
Line 6: Line 10:
  
 
E.
 
E.
 +
 +
==See Also==
 +
 +
{{AMC10 box|year=2000|num-b=14|num-a=16}}

Revision as of 18:54, 8 January 2009

Problem

Solution

$ab=a-b$

$\frac{a}{b}+\frac{b}{a}-ab=\frac{a^2+b^2}{ab}-ab=\frac{-a^2b^2+a^2+b^2}{ab}$

$\frac{-a^2+2ab-b^2+a^2+b^2}{ab}=2$.

E.

See Also

2000 AMC 10 (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions