Difference between revisions of "L'Hopital's Rule"

(L'Hopital's Rule moved to L'Hôpital's Rule: It should be l'Hôpital or l'Hospital)
 
(Proof by Intuition)
Line 1: Line 1:
 
#REDIRECT [[L'Hôpital's Rule]]
 
#REDIRECT [[L'Hôpital's Rule]]
 +
 +
Video by 3Blue1Brown: https://www.youtube.com/watch?v=kfF40MiS7zA
 +
 +
Text explanation:
 +
 +
let <math>z(x) = \frac{f(x)}{g(x)}</math> where <math>f(x)</math> and <math>g(x)</math> are both nonzero function with value <math>0</math> at point <math>a</math>
 +
 +
(for example, <math>g(x) = cos(\frac{\pi}{2} x)</math>, <math>f(x) = 1-x</math>, and <math>a = 0</math>.)
 +
 +
Note that the points surrounding z(a) aren't approaching infinity, as a function like <math>f(x) = 1/x-1</math> might at <math>f(a)</math>
 +
 +
The points infinitely close to z(a) will be equal to <math>\lim{b\to \infty} \frac{f(a+b)}{g(a+b)}</math>
 +
 +
Noting that <math>\lim{b\to \infty} f(x+b)</math> and <math>\lim{b\to \infty} g(x+b)</math> are equal to <math>f'(x)</math> and <math>g'(x)</math> respectively.
 +
This means that the points approaching <math>\frac{f(x)}{g(x)}</math> at point a where <math>f(a)</math> and <math>g(a)</math> are equal to 0 are equal to $\frac{f'(x)}{g'(x)}

Revision as of 20:21, 11 March 2022

Redirect to:

Video by 3Blue1Brown: https://www.youtube.com/watch?v=kfF40MiS7zA

Text explanation:

let $z(x) = \frac{f(x)}{g(x)}$ where $f(x)$ and $g(x)$ are both nonzero function with value $0$ at point $a$

(for example, $g(x) = cos(\frac{\pi}{2} x)$, $f(x) = 1-x$, and $a = 0$.)

Note that the points surrounding z(a) aren't approaching infinity, as a function like $f(x) = 1/x-1$ might at $f(a)$

The points infinitely close to z(a) will be equal to $\lim{b\to \infty} \frac{f(a+b)}{g(a+b)}$

Noting that $\lim{b\to \infty} f(x+b)$ and $\lim{b\to \infty} g(x+b)$ are equal to $f'(x)$ and $g'(x)$ respectively. This means that the points approaching $\frac{f(x)}{g(x)}$ at point a where $f(a)$ and $g(a)$ are equal to 0 are equal to $\frac{f'(x)}{g'(x)}