Difference between revisions of "1991 AJHSME Problems/Problem 7"

(Created page with '==Problem== The value of <math>\frac{(487,000)(12,027,300)+(9,621,001)(487,000)}{(19,367)(.05)}</math> is closest to <math>\text{(A)}\ 10,000,000 \qquad \text{(B)}\ 100,000,000…')
 
Line 27: Line 27:
 
{{AJHSME box|year=1991|num-b=6|num-a=8}}
 
{{AJHSME box|year=1991|num-b=6|num-a=8}}
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Revision as of 23:07, 4 July 2013

Problem

The value of $\frac{(487,000)(12,027,300)+(9,621,001)(487,000)}{(19,367)(.05)}$ is closest to

$\text{(A)}\ 10,000,000 \qquad \text{(B)}\ 100,000,000 \qquad \text{(C)}\ 1,000,000,000 \qquad \text{(D)}\ 10,000,000,000 \qquad \text{(E)}\ 100,000,000,000$

Solution

We can make the approximations \begin{align*} 487,000 &\approx 500,000 \\  12,027,300 &\approx 12,000,000 \\ 9,621,001 &\approx 10,000,000 \\ 19,367 &\approx 20,000. \end{align*}

Using these instead of the original numbers for an estimate, we have \begin{align*} \frac{(500,000)(12,000,000)+(10,000,000)(500,000)}{(20000)(.05)} &= \frac{500,000\times 22,000,000}{1000} \\ &= 500,000 \times 22,000 \\ &= 1.1\times 10^{10} \\ &\approx 10,000,000,000 \rightarrow \boxed{\text{D}}. \end{align*}

See Also

1991 AJHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png