|
|
Line 1: |
Line 1: |
− | ==Problem==
| + | #REDIRECT [[2000 AMC 12 Problems/Problem 11]] |
− | | |
− | Two non-zero real numbers, <math>a</math> and <math>b</math>, satisfy <math>ab=a-b</math>. Find a possible value of <math>\frac{a}{b}+\frac{b}{a}-ab</math>.
| |
− | | |
− | <math>\mathrm{(A)}\ -2 \qquad\mathrm{(B)}\ -\frac{1}{2} \qquad\mathrm{(C)}\ \frac{1}{3} \qquad\mathrm{(D)}\ \frac{1}{2} \qquad\mathrm{(E)}\ 2</math>
| |
− | | |
− | ==Solution==
| |
− | | |
− | <center>
| |
− | <math>\begin{align*}
| |
− | \frac{a}{b}+\frac{b}{a}-ab &= \frac{a^2+b^2}{ab}-ab \\
| |
− | &= \frac{-a^2b^2+a^2+b^2}{ab}\\
| |
− | \end(align*}</math>
| |
− | </center>
| |
− | | |
− | Substituting <math>ab=a-b</math>, we get
| |
− | | |
− | <center>
| |
− | <math>\begin{align*}
| |
− | \frac{-(a-b)^2+a^2+b^2}{ab} &= \frac{-a^2+2ab-b^2+a^2+b^2}{ab} \\
| |
− | &= \frac{2ab}{ab} \\
| |
− | &= 2 \\
| |
− | \end{align*}</math>
| |
− | </center>
| |
− | | |
− | <math>\boxed{\text{E}}</math>
| |
− | | |
− | ==See Also==
| |
− | | |
− | {{AMC10 box|year=2000|num-b=14|num-a=16}}
| |