2000 AMC 12 Problems/Problem 11
- The following problem is from both the 2000 AMC 12 #11 and 2000 AMC 10 #15, so both problems redirect to this page.
Contents
Problem
Two non-zero real numbers, and satisfy . Which of the following is a possible value of ?
Solution 1
.
Another way is to solve the equation for giving then substituting this into the expression and simplifying gives the answer of
Solution 2
This simplifies to . The two integer solutions to this are and . The problem states than and are non-zero, so we consider the case of . So, we end up with
Solution 3
Just realize that two such numbers are and . With this, you can solve and get
Solution 4 (Lame)
Set to some nonzero number. In this case, I'll set it to .
Then solve for . In this case, .
Now just simply evaluate. In this case it's 2. So since 2 is a possible value of the original expression, select .
~hastapasta
Video Solution
https://www.youtube.com/watch?v=7-RloNHTnXM
Video Solution
https://youtu.be/ZWqHxc0i7ro?t=6
~ pi_is_3.14
Video Solution
https://www.youtube.com/watch?v=8nxvuv5oZ7A&t=3s
See also
2000 AMC 12 (Problems • Answer Key • Resources) | |
Preceded by Problem 10 |
Followed by Problem 12 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2000 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.