Difference between revisions of "Proofs without words"
(→Summations: + Nichomauss) |
m (→Summations: pentagonal numbers + color updates) |
||
Line 155: | Line 155: | ||
int lvl(int i){ return ceil(((8*i+9)^.5-1)/2); } | int lvl(int i){ return ceil(((8*i+9)^.5-1)/2); } | ||
− | pen colors(int i){ return rgb(0. | + | pen colors(int i){ return rgb(0.5-lvl(i)/5,0.3+lvl(i)/7,1-lvl(i)/6); } /* shading */ |
void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
Line 196: | Line 196: | ||
int lvl(int i) { return ceil(((8*i+9)^.5-1)/2); } /* return level of square i */ | int lvl(int i) { return ceil(((8*i+9)^.5-1)/2); } /* return level of square i */ | ||
− | pen colors(int i) { return rgb(0. | + | pen colors(int i) { return rgb(0.5-lvl(i)/5,0.3+lvl(i)/7,1-lvl(i)/6); } /* shading */ |
/* draw tick line with label, segment between A and B */ | /* draw tick line with label, segment between A and B */ | ||
Line 265: | Line 265: | ||
int lvl(int i) { return ceil(((8*i+9)^.5-1)/2); } /* return level of square i */ | int lvl(int i) { return ceil(((8*i+9)^.5-1)/2); } /* return level of square i */ | ||
− | pen colors(int i) { return rgb(0. | + | pen colors(int i) { return rgb(0.5-lvl(i)/5,0.3+lvl(i)/7,1-lvl(i)/6); } /* shading */ |
/* draw tick line with label, segment between A and B */ | /* draw tick line with label, segment between A and B */ | ||
Line 350: | Line 350: | ||
} | } | ||
} | } | ||
− | </asy></center> | + | </asy><br>An animated version of this proof can be found in [http://usamts.org/Gallery/G_Gallery.php this gallery].<br><br></center> |
+ | |||
+ | |||
+ | <center><asy> | ||
+ | // To change the value of n shown, edit the line "int n = 5;" to whichever desired value of n. | ||
+ | // To edit the size of the diagram, change the line unitsize(15); to the desired size. | ||
+ | |||
+ | unitsize(15); defaultpen(linewidth(0.7)); | ||
+ | |||
+ | int n = 5; // nth pentagonal number | ||
+ | real r = 0.2; // dot radius | ||
+ | pen p0 = red, p1 = rgb(1,1,0.5), p2 = rgb(0.5,1,0.5), p3 = rgb(0.5,0.5,1); // dot color | ||
+ | |||
+ | // return the coordinate of the ith point of a regular pentagon with radius s | ||
+ | // 0 <= i <= 4, and pentagonalPt(0,s) = (0,0) | ||
+ | pair pentagonalPt(int i, real s) { | ||
+ | return s * (dir(i*72+216+18) - dir(216+18)); | ||
+ | } | ||
+ | |||
+ | // draw triangles | ||
+ | filldraw(pentagonalPt(4,1)--pentagonalPt(4,n-1)--pentagonalPt(3,n-1)+(pentagonalPt(4,n-1)-pentagonalPt(3,n-1))/(n-1)--cycle, p1, linewidth(1)); | ||
+ | filldraw(pentagonalPt(3,1)--pentagonalPt(3,n-1)--pentagonalPt(2,n-1)+(pentagonalPt(3,n-1)-pentagonalPt(2,n-1))/(n-1)--cycle, p2, linewidth(1)); | ||
+ | filldraw(pentagonalPt(2,1)--pentagonalPt(2,n-1)--pentagonalPt(1,n-1)+(pentagonalPt(2,n-1)-pentagonalPt(1,n-1))/(n-1)--cycle, p3, linewidth(1)); | ||
+ | |||
+ | draw(pentagonalPt(1, n-1)--(0,0)--pentagonalPt(4, n-1)); | ||
+ | for(int i = 1; i < n; ++i) { | ||
+ | for(int k = 2; k <= 4; ++k) { | ||
+ | draw(pentagonalPt(k, i) -- pentagonalPt(k-1, i), linetype("2 2")); | ||
+ | for(int j = 0; j <= i; ++j) { | ||
+ | filldraw(circle(pentagonalPt(k, i) + j*(pentagonalPt(k-1, i)-pentagonalPt(k, i))/i, r), p0); | ||
+ | } | ||
+ | } | ||
+ | } | ||
+ | filldraw(circle((0,0),r), p0); | ||
+ | </asy><br> | ||
+ | The <math>n</math>th [[pentagonal number]] is the sum of <math>n</math> and three times the <math>n-1</math>th [[triangular number]]. <br> If <math>P_n</math> denotes the <math>n</math>th pentagonal number, then <math>P_n = 3T_{n-1}+n</math>. | ||
+ | <br><br></center> | ||
<center><asy>defaultpen(linewidth(0.7)); unitsize(15); pen sm = fontsize(10); | <center><asy>defaultpen(linewidth(0.7)); unitsize(15); pen sm = fontsize(10); |
Revision as of 21:35, 23 January 2011
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
The sum of the first odd natural numbers is .
The sum of the first positive integers is .
The sum of the first positive integers is .[1]
Nichomauss' Theorem: can be written as the sum of consecutive integers, and consequently that .
Here, we use the same re-arrangement as the first proof on this page (the sum of first odd integers is a square). Here's another re-arrangement to see this:
This also suggests the following alternative proof:
An animated version of this proof can be found in this gallery.
The th pentagonal number is the sum of and three times the th triangular number.
If denotes the th pentagonal number, then .
The identity , where is the th Fibonacci number.
Geometric series
The infinite geometric series .
The infinite geometric series .
The infinite geometric series .
Another proof of the identity .
The infinite geometric series .
The arithmetic-geometric series , also known as Gabriel's staircase.[2]
Geometry
The Pythagorean Theorem (first of many proofs): the left diagram shows that , and the right diagram shows a second proof by re-arranging the first diagram (the area of the shaded part is equal to , but it is also the re-arranged version of the oblique square, which has area ).[3]
Another proof of the Pythagorean Theorem (animated version).
Another proof of the Pythagorean Theorem; the left-hand diagram suggests the identity , and the right-hand diagram offers another re-arrangement proof.
COMING: The last (sixth) proof of the Pythagorean Theorem we shall present on this page, this one by dissection.
The smallest distance necessary to travel between , the x-axis, and then for is given by .[4]
In trapezoid with , then .
Miscellaneous
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality, .
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.[5]
Fermat's Little Theorem: for (above ).
References
- ^ MathOverflow
- ^ Wolfram MathWorld
- ^ Attributed to the Chinese text Zhou Bi Suan Jing.
- ^ This is more of a proof without words of the AM-GM inequality ; though the lengths of the segments labeled RMS and HM can easily be verified to have values of , respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.