Difference between revisions of "2011 AMC 10A Problems/Problem 17"
m (→Solution) |
|||
Line 14: | Line 14: | ||
Equating the two values we get for the sum, we get the answer <math>A+H+60=85</math> <math>\Longrightarrow</math> <math>A+H=\boxed{25 \ \mathbf{(C)}}</math>. | Equating the two values we get for the sum, we get the answer <math>A+H+60=85</math> <math>\Longrightarrow</math> <math>A+H=\boxed{25 \ \mathbf{(C)}}</math>. | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | |||
+ | {{AMC10 box|year=2011|ab=A|num-b=17|num-a=18}} |
Revision as of 09:47, 8 May 2011
Problem 17
In the eight-term sequence , the value of is 5 and the sum of any three consecutive terms is 30. What is ?
Solution
We consider the sum and use the fact that , and hence .
Equating the two values we get for the sum, we get the answer .
See Also
2011 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 17 |
Followed by Problem 18 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |