Difference between revisions of "1999 AHSME Problems/Problem 15"

(Formatting)
m (Fixed nonparsed $LaTeX$)
Line 3: Line 3:
 
==Problem==
 
==Problem==
  
Let <math> x</math> be a real number such that <math> \sec x \minus{} \tan x = 2</math>. Then <math> \sec x \plus{} \tan x =</math>
+
Let <math> x</math> be a real number such that <math> \sec x - \tan x = 2</math>. Then <math> \sec x + \tan x =</math>
  
 
<math> \textbf{(A)}\ 0.1 \qquad  
 
<math> \textbf{(A)}\ 0.1 \qquad  

Revision as of 19:40, 2 June 2011

This problem needs a solution. If you have a solution for it, please help us out by adding it.

Problem

Let $x$ be a real number such that $\sec x - \tan x = 2$. Then $\sec x + \tan x =$

$\textbf{(A)}\ 0.1 \qquad  \textbf{(B)}\ 0.2 \qquad  \textbf{(C)}\ 0.3 \qquad  \textbf{(D)}\ 0.4 \qquad  \textbf{(E)}\ 0.5$

Solution

See Also

1999 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions