Difference between revisions of "Complex number"

(Simple Example)
Line 31: Line 31:
 
* [[Roots of unity]]
 
* [[Roots of unity]]
 
* [[Geometry with complex numbers]]
 
* [[Geometry with complex numbers]]
 +
 +
== Problems ==
 +
*AIME
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=392620#p392620 1984 #8]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=421338#p421338 1985 #3]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=458040#p458040 1988 #11]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=436603#p436603  1989 #14]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=459508#p459508 1990 #10]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=430620#p430620 1992 #10]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=53847#p53847 1994 #8]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=394743#p394743 1994 #13]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=394478#p394478 1995 #5]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=394249#p394249 1996 #11]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=393654#p393654 1997 #11]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=393661#p393661 1997 #14]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=392484#p392484 1998 #13]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=392227#p392227 1999 #9]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=385894#p385894 2000 Alternate #9]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=378395#p378395 2002 #12]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=378129#p378129 2004 #13]
 +
** [http://www.artofproblemsolving.com/Forum/viewtopic.php?p=368277#p368277 2005 Alternate #9]
 +
  
 
=== See also ===
 
=== See also ===

Revision as of 09:32, 23 June 2006

The set of complex numbers is denoted by $\mathbb{C}$. The set of complex numbers contains the set $\mathbb{R}$ of the real numbers but is much wider. Every complex numbers has a real part, denoted by $\Re$ or simply $\mathrm{Re}$, and a imaginary part, denoted by $\Im$ or simply $\mathrm{Im}$. So if $z\in \mathbb C$, we can write $z=\mathrm{Re}(z)+i\mathrm{Im}(z)$ where $i$ is the imaginary unit.

As you can see, complex numbers enable us to remove the restriction of $x\ge 0$ for the domain of $f(x)=\sqrt{x}$.

The letters $z$ and $\omega$ are usually used to denote complex numbers.

Operations

  • Addition
  • Subtraction
  • Multiplication
  • Division
  • Absolute value/Modulus/Magnitude (denoted by $|z|$). This is the distance from the origin to the complex number when graphed.

Simple Example

If $z=a+bi$ and w = c+di,

  • $\mathrm{Re}(z)=a$,$\mathrm{Im}(z)=b$
  • $|z|=\sqrt{a^2+b^2}$
  • $\mathrm{Re}(w)=c$,$\mathrm{Im}(w)=d$
  • $|w|=\sqrt{c^2+d^2}$
  • $z+w=(a+c)+(b+d)i$
  • $z-w=(a-c)+(b-d)i$

Topics

Problems


See also