Difference between revisions of "1984 AHSME Problems/Problem 4"
m (Created page with "==Problem== Points <math> B, C, F, E </math> are picked on a circle such that <math> BC||EF </math>. When <math> BC </math> is extended to the left, point <math> A </math> is...") |
(→Problem) |
||
Line 1: | Line 1: | ||
− | + | A rectangle intersects a circle as shown: <math>AB=4</math>, <math>BC=5</math>, and <math>DE=3</math>. Then <math>EF</math> equals: | |
− | |||
− | {{ | + | <asy>defaultpen(linewidth(0.7)+fontsize(10)); |
− | + | pair D=origin, E=(3,0), F=(10,0), G=(12,0), H=(12,1), A=(0,1), B=(4,1), C=(9,1), O=circumcenter(B,C,F); | |
+ | draw(D--G--H--A--cycle); | ||
+ | draw(Circle(O, abs(O-C))); | ||
+ | label("$A$", A, NW); | ||
+ | label("$B$", B, NW); | ||
+ | label("$C$", C, NE); | ||
+ | label("$D$", D, SW); | ||
+ | label("$E$", E, SE); | ||
+ | label("$F$", F, SW); | ||
+ | |||
+ | label("4", (2,0.85), N); | ||
+ | label("3", D--E, S); | ||
+ | label("5", (6.5,0.85), N); | ||
+ | </asy> | ||
+ | <math>\mathbf{(A)}\; 6\qquad \mathbf{(B)}\; 7\qquad \mathbf{(C)}\; \frac{20}3\qquad \mathbf{(D)}\; 8\qquad \mathbf{(E)}\; 9</math> | ||
==Solution== | ==Solution== |
Revision as of 15:36, 30 August 2011
A rectangle intersects a circle as shown: , , and . Then equals:
Solution
Draw and , forming a trapezoid. Since it's cyclic, this trapezoid must be isosceles. Also, drop altitudes from to , to , and to , and let the feet of these altitudes be , , and respectively. is a rectangle since it has right angles. Therefore, , and . By the same logic, is also a rectangle, and . since they're both altitudes to a trapezoid, and since the trapezoid is isosceles. Therefore, $\triangleBHE\congruent\triangleCIF$ (Error compiling LaTeX. Unknown error_msg) by HL congruence, so . Also, is a rectangle from right angles, and . Therefore, .
See Also
1984 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |