Difference between revisions of "1984 AHSME Problems/Problem 4"
(→Problem) |
(→Solution) |
||
Line 20: | Line 20: | ||
==Solution== | ==Solution== | ||
<asy> | <asy> | ||
− | + | defaultpen(linewidth(0.7)+fontsize(10)); | |
− | + | pair D=origin, E=(3,0), F=(10,0), X=(12,0), Y=(12,1), A=(0,1), B=(4,1), C=(9,1), O=circumcenter(B,C,F), G=foot(E,A,C), H=foot(B,D,F), I=foot(C,D,F); | |
− | + | draw(D--X--Y--A--cycle); | |
− | + | draw(Circle(O, abs(O-C))); | |
− | + | label("$A$", A, NW); | |
− | + | label("$B$", B, N); | |
− | + | label("$C$", C, NE); | |
− | draw( | + | label("$D$", D, SW); |
− | + | label("$E$", E, S); | |
− | draw(( | + | label("$F$", F, S); |
− | label("$A$", | + | label("$G$", G, N); |
− | label("$B$", | + | label("$H$", H, S); |
− | label("$C$", | + | label("$I$", I, S); |
− | label("$D$", | + | |
− | label("$E$", | + | label("4", (2,0.85), N); |
− | label("$F$", | + | label("3", D--E, S); |
− | label("$G$", | + | label("5", (6.5,0.85), N); |
− | label("$H$", | + | draw(E--G^^H--B^^I--C, linetype("4 4")); |
− | label("$I$", | ||
− | label(" | ||
− | label(" | ||
− | label(" | ||
</asy> | </asy> | ||
Revision as of 15:39, 30 August 2011
A rectangle intersects a circle as shown: , , and . Then equals:
Solution
Draw and , forming a trapezoid. Since it's cyclic, this trapezoid must be isosceles. Also, drop altitudes from to , to , and to , and let the feet of these altitudes be , , and respectively. is a rectangle since it has right angles. Therefore, , and . By the same logic, is also a rectangle, and . since they're both altitudes to a trapezoid, and since the trapezoid is isosceles. Therefore, $\triangleBHE\congruent\triangleCIF$ (Error compiling LaTeX. Unknown error_msg) by HL congruence, so . Also, is a rectangle from right angles, and . Therefore, .
See Also
1984 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |