Difference between revisions of "1993 USAMO Problems/Problem 5"

(Problem 4)
Line 1: Line 1:
== Problem 4==
+
== Problem 5==
  
 
Let <math>a_0, a_1, a_2,\cdots</math> be a sequence of positive real numbers satisfying <math>a_{i-1}a_{i+1}\le a^2_i</math>
 
Let <math>a_0, a_1, a_2,\cdots</math> be a sequence of positive real numbers satisfying <math>a_{i-1}a_{i+1}\le a^2_i</math>

Revision as of 14:28, 15 April 2012

Problem 5

Let $a_0, a_1, a_2,\cdots$ be a sequence of positive real numbers satisfying $a_{i-1}a_{i+1}\le a^2_i$ for $i = 1, 2, 3,\cdots$ . (Such a sequence is said to be log concave.) Show that for each $n > 1$,

$\frac{a_0+\cdots+a_n}{n+1}\cdot\frac{a_1+\cdots+a_{n-1}}{n-1}\ge\frac{a_0+\cdots+a_{n-1}}{n}\cdot\frac{a_1+\cdots+a_{n}}{n}$.

Solution

Resources

1993 USAMO (ProblemsResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5
All USAMO Problems and Solutions