Difference between revisions of "2012 AMC 10B Problems/Problem 21"
(→Solution) |
|||
Line 7: | Line 7: | ||
When you see that there are lengths a and 2a, one could think of 30-60-90 triangles. Since all of the other's lengths are a, you could think that <math>b=\sqrt{3a}</math>. | When you see that there are lengths a and 2a, one could think of 30-60-90 triangles. Since all of the other's lengths are a, you could think that <math>b=\sqrt{3a}</math>. | ||
− | Drawing the points out, it is possible to have a diagram where <math>b=\sqrt{3a}</math>. It turns out that <math>a, 2a, and b</math> could be the lengths of a 30-60-90 triangle, and the other 3 <math>"a's"</math> can be the lengths of an equilateral triangle formed from connecting the dots. | + | Drawing the points out, it is possible to have a diagram where <math>b=\sqrt{3a}</math>. It turns out that <math>a,</math> <math>2a,</math> and <math>b</math> could be the lengths of a 30-60-90 triangle, and the other 3 <math>"a's"</math> can be the lengths of an equilateral triangle formed from connecting the dots. |
So, <math>b=\sqrt{3a}</math>, so <math>b:a= \sqrt{3}=(A)</math> | So, <math>b=\sqrt{3a}</math>, so <math>b:a= \sqrt{3}=(A)</math> |
Revision as of 15:08, 15 January 2013
Problem 21
Four distinct points are arranged on a plane so that the segments connecting them have lengths , , , , , and . What is the ratio of to ?
Solution
When you see that there are lengths a and 2a, one could think of 30-60-90 triangles. Since all of the other's lengths are a, you could think that . Drawing the points out, it is possible to have a diagram where . It turns out that and could be the lengths of a 30-60-90 triangle, and the other 3 can be the lengths of an equilateral triangle formed from connecting the dots. So, , so