Difference between revisions of "1983 USAMO Problems/Problem 2"
Danielguo94 (talk | contribs) (→Solution) |
m |
||
Line 1: | Line 1: | ||
− | == | + | == Problem == |
Prove that the zeros of | Prove that the zeros of | ||
Line 41: | Line 41: | ||
which is true by our lemma. | which is true by our lemma. | ||
+ | |||
+ | == See Also == |
Revision as of 10:50, 17 September 2012
Problem
Prove that the zeros of
cannot all be real if .
Solution
Lemma:
For all real numbers ,
By the trivial inequality,
Making such an inequality for all the variable pairs and summing them, we find the lemma is true.
Now, let our roots be . By Vieta's, and
If we show that for all real that , then we have a contradiction and all of cannot be real. We start by rewriting as
We divide by and find
Expanding the LHS, we have
We subtract the sum in brackets, and then multiply by to find
which is true by our lemma.