Difference between revisions of "Binomial Theorem"

m (proofreading)
m (proofreading)
Line 1: Line 1:
 
==The Theorem==
 
==The Theorem==
First discovered by [[Newton]], the Binomial Theorem states that for real or complex ''a'',''b'',<br><math>(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}</math>  
+
First discovered by [[Newton]], the Binomial Theorem states that for real or complex ''a'',''b'',<br><math>(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}</math>.
  
 
This may be shown for the integers easily:<br>
 
This may be shown for the integers easily:<br>
<math>\displaystyle (a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}</math>
+
<math>\displaystyle (a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}</math>.
<br>Repeatedly using the distributive property, we see that for a term <math>\displaystyle a^m b^{n-m}</math>, we must choose <math>m</math> of the <math>n</math> terms to contribute an <math>a</math> to the term, and then each of the other <math>n-m</math> terms of the product must contribute a <math>b</math>. Thus the coefficient of <math>\displaystyle a^m b^{n-m}</math> is <math>\displaystyle n \choose m</math>. Extending this to all possible values of <math>m</math> from <math>0</math> to <math>n</math>, we see that <math>(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}</math>.
+
<br>Repeatedly using the distributive property, we see that for a term <math>\displaystyle a^m b^{n-m}</math>, we must choose <math>m</math> of the <math>n</math> terms to contribute an <math>a</math> to the term, and then each of the other <math>n-m</math> terms of the product must contribute a <math>b</math>. Thus, the coefficient of <math>\displaystyle a^m b^{n-m}</math> is <math>\displaystyle n \choose m</math>. Extending this to all possible values of <math>m</math> from <math>0</math> to <math>n</math>, we see that <math>(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}</math>.
  
 
==Usage==
 
==Usage==

Revision as of 12:11, 3 July 2006

The Theorem

First discovered by Newton, the Binomial Theorem states that for real or complex a,b,
$(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}$.

This may be shown for the integers easily:
$\displaystyle (a+b)^n=\underbrace{ (a+b)\cdot(a+b)\cdot(a+b)\cdot\cdots\cdot(a+b) }_{n}$.
Repeatedly using the distributive property, we see that for a term $\displaystyle a^m b^{n-m}$, we must choose $m$ of the $n$ terms to contribute an $a$ to the term, and then each of the other $n-m$ terms of the product must contribute a $b$. Thus, the coefficient of $\displaystyle a^m b^{n-m}$ is $\displaystyle n \choose m$. Extending this to all possible values of $m$ from $0$ to $n$, we see that $(a+b)^n = \sum_{k=0}^{n}{n \choose k}\cdot a^k\cdot b^{n-k}$.

Usage

Many factorizations involve complicated polynomials with binomial coefficients. For example, if a contest problem involved the polynomial $x^5+4x^4+6x^3+4x^2+x$, I would factor it as such: $x(x^4+4x^3+6x^2+4x+1)=x(x+1)^{4}$. It is a good idea to be familiar with binomial expansions, and knowing the first few coefficients would also be beneficial.

See also