Difference between revisions of "1997 AHSME Problems"

(Problem 17)
Line 364: Line 364:
  
 
[[1997 AHSME Problems/Problem 30|Solution]]
 
[[1997 AHSME Problems/Problem 30|Solution]]
 +
{{MAA Notice}}

Revision as of 13:11, 5 July 2013

Problem 1

If $\texttt{a}$ and $\texttt{b}$ are digits for which

$\begin{tabular}{ccc}& 2 & a\\ \times & b & 3\\ \hline & 6 & 9\\ 9 & 2\\ \hline 9 & 8 & 9\end{tabular}$ (Error compiling LaTeX. Unknown error_msg)

then $\texttt{a+b =}$

$\mathrm{(A)\ } 3 \qquad \mathrm{(B) \ }4 \qquad \mathrm{(C) \  } 7 \qquad \mathrm{(D) \  } 9 \qquad \mathrm{(E) \  }12$

Solution

Problem 2

The adjacent sides of the decagon shown meet at right angles. What is its perimeter?

[asy] defaultpen(linewidth(.8pt)); dotfactor=4; dot(origin);dot((12,0));dot((12,1));dot((9,1));dot((9,7));dot((7,7));dot((7,10));dot((3,10));dot((3,8));dot((0,8)); draw(origin--(12,0)--(12,1)--(9,1)--(9,7)--(7,7)--(7,10)--(3,10)--(3,8)--(0,8)--cycle); label("$8$",midpoint(origin--(0,8)),W); label("$2$",midpoint((3,8)--(3,10)),W); label("$12$",midpoint(origin--(12,0)),S);[/asy]

$\mathrm{(A)\ } 22 \qquad \mathrm{(B) \ }32 \qquad \mathrm{(C) \  } 34 \qquad \mathrm{(D) \  } 44 \qquad \mathrm{(E) \  }50$

Solution

Problem 3

If $x$, $y$, and $z$ are real numbers such that

$(x-3)^2 + (y-4)^2 + (z-5)^2 = 0$,

then $x + y + z =$

$\mathrm{(A)\ } -12 \qquad \mathrm{(B) \ }0 \qquad \mathrm{(C) \  } 8 \qquad \mathrm{(D) \  } 12 \qquad \mathrm{(E) \  }50$

Solution


Problem 4

If $a$ is $50\%$ larger than $c$, and $b$ is $25\%$ larger than $c$, then $a$ is what percent larger than $b$?

$\mathrm{(A)\ } 20\% \qquad \mathrm{(B) \ }25\% \qquad \mathrm{(C) \  } 50\% \qquad \mathrm{(D) \  } 100\% \qquad \mathrm{(E) \  }200\%$

Solution

Problem 5

A rectangle with perimeter $176$ is divided into five congruent rectangles as shown in the diagram. What is the perimeter of one of the five congruent rectangles? [asy] defaultpen(linewidth(.8pt)); draw(origin--(0,3)--(4,3)--(4,0)--cycle); draw((0,1)--(4,1)); draw((2,0)--midpoint((0,1)--(4,1))); real r = 4/3; draw((r,3)--foot((r,3),(0,1),(4,1))); draw((2r,3)--foot((2r,3),(0,1),(4,1)));[/asy]

$\mathrm{(A)\ } 35.2 \qquad \mathrm{(B) \ }76 \qquad \mathrm{(C) \  } 80 \qquad \mathrm{(D) \  } 84 \qquad \mathrm{(E) \  }86$

Solution


Problem 6

Consider the sequence

$1,-2,3,-4,5,-6,\ldots,$

whose $n$th term is $(-1)^{n+1}\cdot n$. What is the average of the first $200$ terms of the sequence?

$\textbf{(A)}-\!1\qquad\textbf{(B)}-\!0.5\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 0.5\qquad\textbf{(E)}\ 1$

Solution


Problem 7

The sum of seven integers is $-1$. What is the maximum number of the seven integers that can be larger than $13$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 7$

Solution


Problem 8

Mientka Publishing Company prices its bestseller Where's Walter? as follows:

$C(n) =\left\{\begin{matrix}12n, &\text{if }1\le n\le 24\\ 11n, &\text{if }25\le n\le 48\\ 10n, &\text{if }49\le n\end{matrix}\right.$

where $n$ is the number of books ordered, and $C(n)$ is the cost in dollars of $n$ books. Notice that $25$ books cost less than $24$ books. For how many values of $n$ is it cheaper to buy more than $n$ books than to buy exactly $n$ books?

$\textbf{(A)}\ 3\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 5\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 8$

Solution


Problem 9

In the figure, $ABCD$ is a $2 \times 2$ square, $E$ is the midpoint of $\overline{AD}$, and $F$ is on $\overline{BE}$. If $\overline{CF}$ is perpendicular to $\overline{BE}$, then the area of quadrilateral $CDEF$ is

[asy] defaultpen(linewidth(.8pt)); dotfactor=4; pair A = (0,2); pair B = origin; pair C = (2,0); pair D = (2,2); pair E = midpoint(A--D); pair F = foot(C,B,E); dot(A);dot(B);dot(C);dot(D);dot(E);dot(F); label("$A$",A,N);label("$B$",B,S);label("$C$",C,S);label("$D$",D,N);label("$E$",E,N);label("$F$",F,NW); draw(A--B--C--D--cycle); draw(B--E); draw(C--F); draw(rightanglemark(B,F,C,4));[/asy]

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3-\frac{\sqrt{3}}{2}\qquad\textbf{(C)}\ \frac{11}{5}\qquad\textbf{(D)}\ \sqrt{5}\qquad\textbf{(E)}\ \frac{9}{4}$

Solution

Problem 10

Two six-sided dice are fair in the sense that each face is equally likely to turn up. However, one of the dice has the $4$ replaced by $3$ and the other die has the $3$ replaced by $4$ . When these dice are rolled, what is the probability that the sum is an odd number?

$\textbf{(A)}\ \frac{1}{3}\qquad\textbf{(B)}\ \frac{4}{9}\qquad\textbf{(C)}\ \frac{1}{2}\qquad\textbf{(D)}\ \frac{5}{9}\qquad\textbf{(E)}\ \frac{11}{18}$

Solution

Problem 11

In the sixth, seventh, eighth, and ninth basketball games of the season, a player scored $23$,$14$, $11$, and $20$ points, respectively. Her points-per-game average was higher after nine games than it was after the first five games. If her average after ten games was greater than $18$, what is the least number of points she could have scored in the tenth game?

$\textbf{(A)}\ 26\qquad\textbf{(B)}\ 27\qquad\textbf{(C)}\ 28\qquad\textbf{(D)}\ 29\qquad\textbf{(E)}\ 30$

Solution

Problem 12

If $m$ and $b$ are real numbers and $mb>0$, then the line whose equation is $y=mx+b$ cannot contain the point

$\textbf{(A)}\ (0,1997)\qquad\textbf{(B)}\ (0,-1997)\qquad\textbf{(C)}\ (19,97)\qquad\textbf{(D)}\ (19,-97)\qquad\textbf{(E)}\ (1997,0)$

Solution

Problem 13

How many two-digit positive integers $N$ have the property that the sum of $N$ and the number obtained by reversing the order of the digits of is a perfect square?

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8$

Solution

Problem 14

The number of geese in a flock increases so that the difference between the populations in year $n+2$ and year $n$ is directly proportional to the population in year $n+1$. If the populations in the years $1994$, $1995$, and $1997$ were $39$, $60$, and $123$, respectively, then the population in $1996$ was

$\textbf{(A)}\ 81\qquad\textbf{(B)}\ 84\qquad\textbf{(C)}\ 87\qquad\textbf{(D)}\ 90\qquad\textbf{(E)}\ 102$

Solution

Problem 15

Medians $BD$ and $AE$ of triangle $ABC$ are perpendicular, $BD=8$, and $CE=12$. The area of triangle $ABC$ is

[asy] defaultpen(linewidth(.8pt)); dotfactor=4; pair A = origin; pair B = (1.25,1); pair C = (2,0); pair D = midpoint(A--C); pair E = midpoint(A--B); pair G = intersectionpoint(E--C,B--D); dot(A);dot(B);dot(C);dot(D);dot(E);dot(G); label("$A$",A,S);label("$B$",B,N);label("$C$",C,S);label("$D$",D,S);label("$E$",E,NW);label("$G$",G,NE); draw(A--B--C--cycle); draw(B--D); draw(E--C); draw(rightanglemark(C,G,D,3));[/asy]

$\textbf{(A)}\ 24\qquad\textbf{(B)}\ 32\qquad\textbf{(C)}\ 48\qquad\textbf{(D)}\ 64\qquad\textbf{(E)}\ 96$

Solution

Problem 16

The three row sums and the three column sums of the array

\[\left[\begin{matrix}4 & 9 & 2\\ 8 & 1 & 6\\ 3 & 5 & 7\end{matrix}\right]\]

are the same. What is the least number of entries that must be altered to make all six sums different from one another?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Problem 17

A line $x=k$ intersects the graph of $y=\log_5 x$ and the graph of $y=\log_5 (x + 4)$. The distance between the points of intersection is $0.5$. Given that $k = a + \sqrt{b}$, where $a$ and $b$ are integers, what is $a+b$?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

Problem 18

A list of integers has mode $32$ and mean $22$. The smallest number in the list is $10$. The median $m$ of the list is a member of the list. If the list member $m$ were replaced by $m+10$, the mean and median of the new list would be $24$ and $m+10$, respectively. If were $m$ instead replaced by $m-8$, the median of the new list would be $m-4$. What is $m$?

$\textbf{(A)}\ 16\qquad\textbf{(B)}\ 17\qquad\textbf{(C)}\ 18\qquad\textbf{(D)}\ 19\qquad\textbf{(E)}\ 20$

Solution

Problem 19

A circle with center $O$ is tangent to the coordinate axes and to the hypotenuse of the $30^\circ$-$60^\circ$-$90^\circ$ triangle $ABC$ as shown, where $AB=1$. To the nearest hundredth, what is the radius of the circle?


[asy] defaultpen(linewidth(.8pt)); dotfactor=3; pair A = origin; pair B = (1,0); pair C = (0,sqrt(3)); pair O = (2.33,2.33); dot(A);dot(B);dot(C);dot(O); label("$A$",A,SW);label("$B$",B,SE);label("$C$",C,W);label("$O$",O,NW); label("$1$",midpoint(A--B),S);label("$60^\circ$",B,2W + N); draw((3,0)--A--(0,3)); draw(B--C); draw(Arc(O,2.33,163,288.5));[/asy]

$\textbf{(A)}\ 2.18\qquad\textbf{(B)}\ 2.24\qquad\textbf{(C)}\ 2.31\qquad\textbf{(D)}\ 2.37\qquad\textbf{(E)}\ 2.41$

Solution

Problem 20

Which one of the following integers can be expressed as the sum of $100$ consecutive positive integers?

$\textbf{(A)}\ 1,\!627,\!384,\!950\qquad\textbf{(B)}\ 2,\!345,\!678,\!910\qquad\textbf{(C)}\ 3,\!579,\!111,\!300\qquad\textbf{(D)}\ 4,\!692,\!581,\!470\qquad\textbf{(E)}\ 5,\!815,\!937,\!260$

Solution

Problem 21

For any positive integer $n$, let

$f(n) =\left\{\begin{matrix}\log_{8}{n}, &\text{if }\log_{8}{n}\text{ is rational,}\\ 0, &\text{otherwise.}\end{matrix}\right.$

What is $\sum_{n = 1}^{1997}{f(n)}$?

$\textbf{(A)}\ \log_{8}{2047}\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ \frac{55}{3}\qquad\textbf{(D)}\ \frac{58}{3}\qquad\textbf{(E)}\ 585$

Solution

Problem 22

Ashley, Betty, Carlos, Dick, and Elgin went shopping. Each had a whole number of dollars to spend, and together they had $56$ dollars. The absolute difference between the amounts Ashley and Betty had to spend was $19$ dollars. The absolute difference between the amounts Betty and Carlos had was $7$ dollars, between Carlos and Dick was $5$ dollars, between Dick and Elgin was $4$ dollars, and between Elgin and Ashley was $11$ dollars. How many dollars did Elgin have?

$\textbf{(A)}\ 6\qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 9\qquad\textbf{(E)}\ 10$

Solution

Problem 23

[asy] defaultpen(linewidth(.8pt)+fontsize(10pt)); draw((-1,1)--(2,1)); draw((-1,0)--(1,0)); draw((-1,1)--(-1,0)); draw((0,-1)--(0,3)); draw((1,2)--(1,0)); draw((-1,1)--(1,1)); draw((0,2)--(1,2)); draw((0,3)--(1,2)); draw((0,-1)--(2,1)); draw((0,-1)--((0,-1) + sqrt(2)*dir(-15))); draw(((0,-1) + sqrt(2)*dir(-15))--(1,0)); label("$\textbf{A}$",foot((0,2),(0,3),(1,2)),SW); label("$\textbf{B}$",midpoint((0,1)--(1,2))); label("$\textbf{C}$",midpoint((-1,0)--(0,1))); label("$\textbf{D}$",midpoint((0,0)--(1,1))); label("$\textbf{E}$",midpoint((1,0)--(2,1)),NW); label("$\textbf{F}$",midpoint((0,-1)--(1,0)),NW); label("$\textbf{G}$",midpoint((0,-1)--(1,0)),2SE);[/asy]

In the figure, polygons $A$, $E$, and $F$ are isosceles right triangles; $B$, $C$, and $D$ are squares with sides of length $1$; and $G$ is an equilateral triangle. The figure can be folded along its edges to form a polyhedron having the polygons as faces. The volume of this polyhedron is

$\textbf{(A)}\ 1/2\qquad\textbf{(B)}\ 2/3\qquad\textbf{(C)}\ 3/4\qquad\textbf{(D)}\ 5/6\qquad\textbf{(E)}\ 4/3$

Solution

Problem 24

A rising number, such as $34689$, is a positive integer each digit of which is larger than each of the digits to its left. There are $\binom{9}{5} = 126$ five-digit rising numbers. When these numbers are arranged from smallest to largest, the $97^{th}$ number in the list does not contain the digit

$\textbf{(A)}\ 4\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 7\qquad\textbf{(E)}\ 8$

Solution

Problem 25

Let $ABCD$ be a parallelogram and let $\overrightarrow{AA^\prime}$, $\overrightarrow{BB^\prime}$, $\overrightarrow{CC^\prime}$, and $\overrightarrow{DD^\prime}$ be parallel rays in space on the same side of the plane determined by $ABCD$. If $AA^\prime = 10$, $BB^\prime = 8$, $CC^\prime = 18$, and $DD^\prime = 22$ and $M$ and $N$ are the midpoints of $A^\prime C^\prime$ and $B^\prime D^\prime$, respectively, then $MN =$

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 2\qquad\textbf{(D)}\ 3\qquad\textbf{(E)}\ 4$

Solution

Problem 26

Triangle $ABC$ and point $P$ in the same plane are given. Point $P$ is equidistant from $A$ and $B$, angle $APB$ is twice angle $ACB$, and $\overline{AC}$ intersects $\overline{BP}$ at point $D$. If $PB = 3$ and $PD= 2$, then $AD\cdot CD =$

[asy] defaultpen(linewidth(.8pt)); dotfactor=4; pair A = origin; pair B = (2,0); pair C = (3,1); pair P = (1,2.25); pair D = intersectionpoint(P--B,C--A); dot(A);dot(B);dot(C);dot(P);dot(D); label("$A$",A,SW);label("$B$",B,SE);label("$C$",C,N);label("$D$",D,NE + N);label("$P$",P,N); draw(A--B--P--cycle); draw(A--C--B--cycle);[/asy]

$\textbf{(A)}\ 5\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 7\qquad\textbf{(D)}\ 8\qquad\textbf{(E)}\ 9$

Solution

Problem 27

Consider those functions $f$ that satisfy $f(x+4)+f(x-4) = f(x)$ for all real $x$. Any such function is periodic, and there is a least common positive period $p$ for all of them. Find $p$.

$\textbf{(A)}\ 8\qquad\textbf{(B)}\ 12\qquad\textbf{(C)}\ 16\qquad\textbf{(D)}\ 24\qquad\textbf{(E)}\ 32$

Solution

Problem 28

How many ordered triples of integers $(a,b,c)$ satisfy $|a+b|+c = 19$ and $ab+|c| = 97$?

$\textbf{(A)}\ 0\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 6\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12$

Solution

Problem 29

Call a positive real number special if it has a decimal representation that consists entirely of digits $0$ and $7$. For example, $\frac{700}{99}= 7.\overline{07}= 7.070707\cdots$ and $77.007$ are special numbers. What is the smallest $n$ such that $1$ can be written as a sum of $n$ special numbers?

$\textbf{(A)}\ 7\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 10\qquad\\ \textbf{(E)}\ \text{The number 1 cannot be represented as a sum of finitely many special numbers.}$

Solution

Problem 30

For positive integers $n$, denote $D(n)$ by the number of pairs of different adjacent digits in the binary (base two) representation of $n$. For example, $D(3) = D(11_{2}) = 0$, $D(21) = D(10101_{2}) = 4$, and $D(97) = D(1100001_{2}) = 2$. For how many positive integers less than or equal $97$ to does $D(n) = 2$?

$\textbf{(A)}\ 16\qquad\textbf{(B)}\ 20\qquad\textbf{(C)}\ 26\qquad\textbf{(D)}\ 30\qquad\textbf{(E)}\ 35$

Solution The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png