Difference between revisions of "2013 AMC 12B Problems/Problem 19"

m (Created page with "==Problem== A lattice point in an <math>xy</math>-coordinate system is any point <math>(x, y)</math> where both <math>x</math> and <math>y</math> are integers. The graph of <mat...")
 
Line 4: Line 4:
  
 
<math>\textbf{(A)}\ \frac{51}{101} \qquad \textbf{(B)}\ \frac{50}{99} \qquad \textbf{(C)}\ \frac{51}{100} \qquad \textbf{(D)}\ \frac{52}{101} \qquad \textbf{(E)}\ \frac{13}{25}</math>
 
<math>\textbf{(A)}\ \frac{51}{101} \qquad \textbf{(B)}\ \frac{50}{99} \qquad \textbf{(C)}\ \frac{51}{100} \qquad \textbf{(D)}\ \frac{52}{101} \qquad \textbf{(E)}\ \frac{13}{25}</math>
 +
 +
==Solution==
 +
Since <math>\angle{AFB}=\angle{ADB}=90</math>, quadrilateral <math>ABDF</math> is cyclic. It follows that <math>\angle{ADE}=\angle{ABF}</math>. In addition, since <math>\angle{AFB}=\angle{AED}=90</math>, triangles <math>ABF</math> and <math>ADE</math> are similar. It follows that <math>AF=(13)(\frac{4}{5}), BF=(13)(\frac{3}{5})</math>. By Ptolemy, we have <math>13DF+(5)(13)(\frac{4}{5})=(12)(13)(\frac{3}{5})</math>. Cancelling <math>13</math>, the rest is easy. We obtain <math>DF=\frac{16}{5}\implies{16+5=21}\implies{\boxed{\textbf{(B)}  21}</math>

Revision as of 15:53, 22 February 2013

Problem

A lattice point in an $xy$-coordinate system is any point $(x, y)$ where both $x$ and $y$ are integers. The graph of $y = mx + 2$ passes through no lattice point with $0 < x \leq 100$ for all $m$ such that $\frac{1}{2} < m < a$. What is the maximum possible value of $a$?

$\textbf{(A)}\ \frac{51}{101} \qquad \textbf{(B)}\ \frac{50}{99} \qquad \textbf{(C)}\ \frac{51}{100} \qquad \textbf{(D)}\ \frac{52}{101} \qquad \textbf{(E)}\ \frac{13}{25}$

Solution

Since $\angle{AFB}=\angle{ADB}=90$, quadrilateral $ABDF$ is cyclic. It follows that $\angle{ADE}=\angle{ABF}$. In addition, since $\angle{AFB}=\angle{AED}=90$, triangles $ABF$ and $ADE$ are similar. It follows that $AF=(13)(\frac{4}{5}), BF=(13)(\frac{3}{5})$. By Ptolemy, we have $13DF+(5)(13)(\frac{4}{5})=(12)(13)(\frac{3}{5})$. Cancelling $13$, the rest is easy. We obtain $DF=\frac{16}{5}\implies{16+5=21}\implies{\boxed{\textbf{(B)} 21}$ (Error compiling LaTeX. Unknown error_msg)