Difference between revisions of "2013 AIME II Problems/Problem 13"
(Problem 13) |
|||
Line 1: | Line 1: | ||
In <math>\triangle ABC</math>, <math>AC = BC</math>, and point <math>D</math> is on <math>\overline{BC}</math> so that <math>CD = 3\cdot BD</math>. Let <math>E</math> be the midpoint of <math>\overline{AD}</math>. Given that <math>CE = \sqrt{7}</math> and <math>BE = 3</math>, the area of <math>\triangle ABC</math> can be expressed in the form <math>m\sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. | In <math>\triangle ABC</math>, <math>AC = BC</math>, and point <math>D</math> is on <math>\overline{BC}</math> so that <math>CD = 3\cdot BD</math>. Let <math>E</math> be the midpoint of <math>\overline{AD}</math>. Given that <math>CE = \sqrt{7}</math> and <math>BE = 3</math>, the area of <math>\triangle ABC</math> can be expressed in the form <math>m\sqrt{n}</math>, where <math>m</math> and <math>n</math> are positive integers and <math>n</math> is not divisible by the square of any prime. Find <math>m+n</math>. | ||
+ | ==Solution== | ||
+ | After drawing the figure, we suppose <math>BD=a</math>, so that<math>CD=3a</math>,<math>AC=4a</math>, and <math>AE=ED=b</math>. | ||
+ | |||
+ | Using cosine law for <math>\triangle AEC</math> and <math>\triangle CED</math>,we get | ||
+ | |||
+ | <math>b^2+7-2\sqrt{7}\cdot cos(\angle CED)=9a^2</math> ... <math>(1)</math> | ||
+ | |||
+ | <math>b^2+7+2\sqrt{7}\cdot cos(\angle CED)=16a^2</math> ...<math>(2)</math> | ||
+ | |||
+ | So, <math>(1)+(2)</math>, we get<math>2b^2+14=25a^2</math>...<math>(3)</math> | ||
+ | |||
+ | Using cosine law in <math>\triangle ACD</math>,we get | ||
+ | |||
+ | <math>4b^2+9a^2-2\cdot 2b\cdot 3a\cdot cos(\angle ADC)=16a^2</math> | ||
+ | |||
+ | So, <math>cos(\angle ADC)=\frac{7a^2-4b^2}{12ab}</math>...<math>(4)</math> | ||
+ | |||
+ | Using cosine law in <math>\triangle EDC</math> and <math>\triangle EDB</math>, we get | ||
+ | |||
+ | <math>b^2+9a^2-2\cdot 3a\cdot b\cdot cos(\angle ADC)=7</math>...<math>(5)</math> | ||
+ | |||
+ | <math>b^2+a^2+2\cdot a\cdot b\cdot cos(\angle ADC)=9</math>...<math>(6)</math> | ||
+ | |||
+ | <math>(5)+(6)</math>, and according to <math>(4)</math>, we can get <math>37a^2+2b^2=48</math>...<math>(7)</math> | ||
+ | |||
+ | Using <math>(3)</math> and <math>(7)</math>, we can solve <math>a=1</math> and <math>b=\frac{\sqrt{22}}{2}</math> | ||
+ | |||
+ | Finally, we use cosine law for <math>\triangle ADB</math>, | ||
+ | |||
+ | <math>4(\frac{\sqrt{22}}{2})^2+1+2\cdot\2(\frac{\sqrt{22}}{2})\cdot cos(ADC)=AB^2</math> | ||
+ | |||
+ | then <math>AB=2\sqrt{7}</math> | ||
+ | |||
+ | so the height of this <math>\triangle ABC</math> is <math>\sqrt{4^2-(\sqrt{7})^2}=3</math> | ||
+ | |||
+ | Then the area of <math>\triangle ABC</math> is <math>3\sqrt{7}</math>, so the answer is <math>\boxed{10}</math> |
Revision as of 20:22, 4 April 2013
In , , and point is on so that . Let be the midpoint of . Given that and , the area of can be expressed in the form , where and are positive integers and is not divisible by the square of any prime. Find .
Solution
After drawing the figure, we suppose , so that,, and .
Using cosine law for and ,we get
...
...
So, , we get...
Using cosine law in ,we get
So, ...
Using cosine law in and , we get
...
...
, and according to , we can get ...
Using and , we can solve and
Finally, we use cosine law for ,
$4(\frac{\sqrt{22}}{2})^2+1+2\cdot\2(\frac{\sqrt{22}}{2})\cdot cos(ADC)=AB^2$ (Error compiling LaTeX. Unknown error_msg)
then
so the height of this is
Then the area of is , so the answer is