Difference between revisions of "2013 USAJMO"
Mrdavid445 (talk | contribs) (→Day 1) |
Mrdavid445 (talk | contribs) (→Problem 3) |
||
Line 17: | Line 17: | ||
===Problem 3=== | ===Problem 3=== | ||
− | In triangle , points lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that . | + | In triangle <math>ABC</math>, points <math>P,Q,R</math> lie on sides <math>BC,CA,AB</math> respectively. Let <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> denote the circumcircles of triangles <math>AQR</math>, <math>BRP</math>, <math>CPQ</math>, respectively. Given the fact that segment <math>AP</math> intersects <math>\omega_A</math>, <math>\omega_B</math>, <math>\omega_C</math> again at <math>X,Y,Z</math> respectively, prove that <math>YX/XZ=BP/PC</math>. |
[[2013 USAMO Problems/Problem 1|Solution]] | [[2013 USAMO Problems/Problem 1|Solution]] |
Revision as of 18:17, 11 May 2013
Contents
Day 1
Problem 1
Are there integers and such that and are both perfect cubes of integers?
Problem 2
Each cell of an board is filled with some nonnegative integer. Two numbers in the filling are said to be adjacent if their cells share a common side. (Note that two numbers in cells that share only a corner are not adjacent). The filling is called a garden if it satisfies the following two conditions:
(i) The difference between any two adjacent numbers is either or . (ii) If a number is less than or equal to all of its adjacent numbers, then it is equal to .
Determine the number of distinct gardens in terms of and .
Problem 3
In triangle , points lie on sides respectively. Let , , denote the circumcircles of triangles , , , respectively. Given the fact that segment intersects , , again at respectively, prove that .
Day 2
Problem 4
Let be the number of ways to write as a sum of powers of , where we keep track of the order of the summation. For example, because can be written as , , , , , and . Find the smallest greater than for which is odd.
Problem 5
Quadrilateral is inscribed in the semicircle with diameter . Segments and meet at . Point is the foot of the perpendicular from to line . Point lies on such that line is perpendicular to line . Let be the intersection of segments and . Prove that
Problem 6
Find all real numbers satisfying
See Also
2013 USAJMO (Problems • Resources) | ||
Preceded by 2012 USAJMO |
Followed by 2014 USAJMO | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAJMO Problems and Solutions |