Difference between revisions of "2006 AMC 10B Problems/Problem 11"
Freddie123 (talk | contribs) m (→Solution) |
|||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | Since <math>10!</math> is [[divisibility | divisible]] by <math>100</math>, any [[factorial]] greater than <math>10!</math> is also divisible by <math>100</math>. The last two [[digit]]s of all factorials greater than <math>10!</math> are <math>00</math>, so the last two digits of <math>10!+11!+...+2006!</math> | + | Since <math>10!</math> is [[divisibility | divisible]] by <math>100</math>, any [[factorial]] greater than <math>10!</math> is also divisible by <math>100</math>. The last two [[digit]]s of all factorials greater than <math>10!</math> are <math>00</math>, so the last two digits of <math>10!+11!+...+2006!</math> are <math>00</math>. |
(*) | (*) | ||
Revision as of 14:05, 25 October 2015
Problem
What is the tens digit in the sum
Solution
Since is divisible by , any factorial greater than is also divisible by . The last two digits of all factorials greater than are , so the last two digits of are . (*)
So all that is needed is the tens digit of the sum
So the tens digit is
(*) A slightly faster method would have to take the residue of Since we can rewrite the sum as Since the last two digits of the sum is , the tens digit is
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.