Difference between revisions of "2010 AMC 10B Problems/Problem 25"
Mathcool2009 (talk | contribs) m (→Solution) |
|||
Line 12: | Line 12: | ||
== Solution == | == Solution == | ||
− | + | We observe that because <math>P(1) = P(3) = P(5) = P(7) = a</math>, if we define a new polynomial <math>R(x)</math> such that <math>R(x) = P(x) - a</math>, <math>R(x)</math> has roots when <math>P(x) = a</math>; namely, when <math>x=1,3,5,7</math>. | |
+ | |||
+ | Thus since <math>R(x)</math> has roots when <math>x=1,3,5,7</math>, we can factor the product <math>(x-1)(x-3)(x-5)(x-7)</math> out of <math>R(x)</math> to obtain a new polynomial <math>Q(x)</math> such that <math>(x-1)(x-3)(x-5)(x-7)(Q(x)) = R(x) = P(x) - a</math>. | ||
Then, plugging in values of <math>2,4,6,8,</math> we get | Then, plugging in values of <math>2,4,6,8,</math> we get |
Revision as of 16:17, 20 December 2013
Problem
Let , and let be a polynomial with integer coefficients such that
, and
.
What is the smallest possible value of ?
Solution
We observe that because , if we define a new polynomial such that , has roots when ; namely, when .
Thus since has roots when , we can factor the product out of to obtain a new polynomial such that .
Then, plugging in values of we get
Thus, the least value of must be the . Solving, we receive , so our answer is .
See also
2010 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.