Difference between revisions of "1989 AHSME Problems/Problem 2"
m |
|||
Line 1: | Line 1: | ||
− | <math>\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}</math> and hence the answer is D. | + | |
+ | == Problem == | ||
+ | |||
+ | <math> (-1)^{5^{2}}+1^{2^{5}}= </math> | ||
+ | |||
+ | <math> \textrm{(A)}\ -7\qquad\textrm{(B)}\ -2\qquad\textrm{(C)}\ 0\qquad\textrm{(D)}\ 1\qquad\textrm{(E)}\ 57 </math> | ||
+ | |||
+ | == Solution == | ||
+ | |||
+ | <math>\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}</math> and hence the answer is <math>\fbox{D}</math>. | ||
+ | |||
+ | |||
+ | == See also == | ||
+ | {{AHSME box|year=1989|num-b=1|num-a=3}} | ||
+ | |||
+ | [[Category: Introductory Algebra Problems]] | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 06:38, 22 October 2014
Problem
Solution
and hence the answer is .
See also
1989 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.