Difference between revisions of "1989 AHSME Problems/Problem 2"

m
Line 1: Line 1:
<math>\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}</math> and hence the answer is D.
+
 
 +
== Problem ==
 +
 
 +
<math> (-1)^{5^{2}}+1^{2^{5}}= </math>
 +
 
 +
<math> \textrm{(A)}\ -7\qquad\textrm{(B)}\ -2\qquad\textrm{(C)}\ 0\qquad\textrm{(D)}\ 1\qquad\textrm{(E)}\ 57 </math>
 +
 
 +
== Solution ==
 +
 
 +
<math>\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}</math> and hence the answer is <math>\fbox{D}</math>.
 +
 
 +
 
 +
== See also ==
 +
{{AHSME box|year=1989|num-b=1|num-a=3}} 
 +
 
 +
[[Category: Introductory Algebra Problems]]
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 06:38, 22 October 2014

Problem

$(-1)^{5^{2}}+1^{2^{5}}=$

$\textrm{(A)}\ -7\qquad\textrm{(B)}\ -2\qquad\textrm{(C)}\ 0\qquad\textrm{(D)}\ 1\qquad\textrm{(E)}\ 57$

Solution

$\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}$ and hence the answer is $\fbox{D}$.


See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png