Difference between revisions of "2014 AMC 12B Problems/Problem 21"

(Solution1)
m
Line 11: Line 11:
 
<math> \textbf{(A) }\frac{1}{2}(\sqrt{6}-2)\qquad\textbf{(B) }\frac{1}{4}\qquad\textbf{(C) }2-\sqrt{3}\qquad\textbf{(D) }\frac{\sqrt{3}}{6}\qquad\textbf{(E) } 1-\frac{\sqrt{2}}{2}</math>
 
<math> \textbf{(A) }\frac{1}{2}(\sqrt{6}-2)\qquad\textbf{(B) }\frac{1}{4}\qquad\textbf{(C) }2-\sqrt{3}\qquad\textbf{(D) }\frac{\sqrt{3}}{6}\qquad\textbf{(E) } 1-\frac{\sqrt{2}}{2}</math>
  
==Solution1==
+
==Solution 1==
 
Draw the attitude from <math>H</math> to <math>AB</math> and call the foot <math>L</math>. Then <math>HL=1</math>. Consider <math>HJ</math>. It is the hypotenuse of both right triangles <math>\triangle HGJ</math> and <math>\triangle HLJ</math>, and we know <math>HG=BE</math> and <math>JG=1</math>, so we must have <math>LJ=HG=BE</math>.
 
Draw the attitude from <math>H</math> to <math>AB</math> and call the foot <math>L</math>. Then <math>HL=1</math>. Consider <math>HJ</math>. It is the hypotenuse of both right triangles <math>\triangle HGJ</math> and <math>\triangle HLJ</math>, and we know <math>HG=BE</math> and <math>JG=1</math>, so we must have <math>LJ=HG=BE</math>.
  
 
Notice that all four triangles in this picture are similar and thus we have <math>LA=HD=EJ=1-BE</math>. This means <math>J</math> is the midpoint of <math>AB</math>. So <math>\triangle AJG</math>, along with all other similar triangles in the picture, is a 30-60-90 triangle, and we have <math>AG=\sqrt{3} \cdot AJ=\sqrt{3}/2</math> and subsequently <math>GD=\frac{2-\sqrt{3}}{2}=KE</math>. This means <math>EJ=\sqrt{3} \cdot KE=\frac{2\sqrt{3}-3}{2}</math>, which gives <math>BE=\frac{1}{2}-EJ=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}</math>, so the answer is <math>\textbf{(C)}</math>.
 
Notice that all four triangles in this picture are similar and thus we have <math>LA=HD=EJ=1-BE</math>. This means <math>J</math> is the midpoint of <math>AB</math>. So <math>\triangle AJG</math>, along with all other similar triangles in the picture, is a 30-60-90 triangle, and we have <math>AG=\sqrt{3} \cdot AJ=\sqrt{3}/2</math> and subsequently <math>GD=\frac{2-\sqrt{3}}{2}=KE</math>. This means <math>EJ=\sqrt{3} \cdot KE=\frac{2\sqrt{3}-3}{2}</math>, which gives <math>BE=\frac{1}{2}-EJ=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}</math>, so the answer is <math>\textbf{(C)}</math>.
  
==Solution2==
+
==Solution 2==
 
Let <math>BE = x</math>.  Let <math>JA = y</math>.  Because <math>\angle FKH = \angle EJK = \angle AGJ = \angle DHG</math> and <math>\angle FHK = \angle EKJ = \angle AJG = \angle DGH</math>, <math>\triangle KEJ, \triangle JAG, \triangle GDH, \triangle HFK</math> are all similar.  Using proportions and the pythagorean theorem, we find  
 
Let <math>BE = x</math>.  Let <math>JA = y</math>.  Because <math>\angle FKH = \angle EJK = \angle AGJ = \angle DHG</math> and <math>\angle FHK = \angle EKJ = \angle AJG = \angle DGH</math>, <math>\triangle KEJ, \triangle JAG, \triangle GDH, \triangle HFK</math> are all similar.  Using proportions and the pythagorean theorem, we find  
 
<cmath>EK = xy</cmath>
 
<cmath>EK = xy</cmath>
Line 31: Line 31:
 
<cmath>x= 2\left(1-\sqrt{1-\frac{1}{4}}\right) = 2\left(\frac{2-\sqrt{3}}{2} \right) = \boxed{\textbf{(C)}\ 2-\sqrt{3}}</cmath>
 
<cmath>x= 2\left(1-\sqrt{1-\frac{1}{4}}\right) = 2\left(\frac{2-\sqrt{3}}{2} \right) = \boxed{\textbf{(C)}\ 2-\sqrt{3}}</cmath>
  
 +
== See also ==
 
{{AMC12 box|year=2014|ab=B|num-b=20|num-a=22}}
 
{{AMC12 box|year=2014|ab=B|num-b=20|num-a=22}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 12:26, 22 February 2014

Problem 21

In the figure, $ABCD$ is a square of side length $1$. The rectangles $JKHG$ and $EBCF$ are congruent. What is $BE$? [asy] pair A=(1,0), B=(0,0), C=(0,1), D=(1,1), E=(2-sqrt(3),0), F=(2-sqrt(3),1), G=(1,sqrt(3)/2), H=(2.5-sqrt(3),1), J=(.5,0), K=(2-sqrt(3),1-sqrt(3)/2); draw(A--B--C--D--cycle); draw(K--H--G--J--cycle); draw(F--E); label("$A$",A,SE); label("$B$",B,SW); label("$C$",C,NW); label("$D$",D,NE); label("$E$",E,S); label("$F$",F,N); label("$G$",G,E); label("$H$",H,N); label("$J$",J,S); label("$K$",K,W); [/asy] $\textbf{(A) }\frac{1}{2}(\sqrt{6}-2)\qquad\textbf{(B) }\frac{1}{4}\qquad\textbf{(C) }2-\sqrt{3}\qquad\textbf{(D) }\frac{\sqrt{3}}{6}\qquad\textbf{(E) } 1-\frac{\sqrt{2}}{2}$

Solution 1

Draw the attitude from $H$ to $AB$ and call the foot $L$. Then $HL=1$. Consider $HJ$. It is the hypotenuse of both right triangles $\triangle HGJ$ and $\triangle HLJ$, and we know $HG=BE$ and $JG=1$, so we must have $LJ=HG=BE$.

Notice that all four triangles in this picture are similar and thus we have $LA=HD=EJ=1-BE$. This means $J$ is the midpoint of $AB$. So $\triangle AJG$, along with all other similar triangles in the picture, is a 30-60-90 triangle, and we have $AG=\sqrt{3} \cdot AJ=\sqrt{3}/2$ and subsequently $GD=\frac{2-\sqrt{3}}{2}=KE$. This means $EJ=\sqrt{3} \cdot KE=\frac{2\sqrt{3}-3}{2}$, which gives $BE=\frac{1}{2}-EJ=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}$, so the answer is $\textbf{(C)}$.

Solution 2

Let $BE = x$. Let $JA = y$. Because $\angle FKH = \angle EJK = \angle AGJ = \angle DHG$ and $\angle FHK = \angle EKJ = \angle AJG = \angle DGH$, $\triangle KEJ, \triangle JAG, \triangle GDH, \triangle HFK$ are all similar. Using proportions and the pythagorean theorem, we find \[EK = xy\] \[FK = \sqrt{1-y^2}\] \[EJ = x\sqrt{1-y^2}\] Because we know that $BE+EJ+AJ = EK + FK = 1$, we can set up a systems of equations \[x + x\sqrt{1-y^2} + y = 1\] \[xy + \sqrt{1-y^2} = 1\] Solving for $x$ in the second equation, we get \[x= \frac{1-\sqrt{1-y^2}}{y}\] Plugging this into the first equation, we get \[\frac{1-\sqrt{1-y^2}}{y} + (\sqrt{1-y^2})\frac{1-\sqrt{1-y^2}}{y} + y = 1 \implies \frac{2y^2}{y}=1 \implies y=\frac{1}{2}\] Plugging into the previous equation with $x$, we get \[x= 2\left(1-\sqrt{1-\frac{1}{4}}\right) = 2\left(\frac{2-\sqrt{3}}{2} \right) = \boxed{\textbf{(C)}\ 2-\sqrt{3}}\]

See also

2014 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png