Difference between revisions of "1964 AHSME Problems/Problem 31"

Line 1: Line 1:
 +
==Problem==
 +
 
Let <cmath>f(n)=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{5-3\sqrt{5}}{10}\left(\dfrac{1-\sqrt{5}}{2}\right)^n.</cmath>
 
Let <cmath>f(n)=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{5-3\sqrt{5}}{10}\left(\dfrac{1-\sqrt{5}}{2}\right)^n.</cmath>
  

Revision as of 16:54, 5 March 2014

Problem

Let \[f(n)=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{5-3\sqrt{5}}{10}\left(\dfrac{1-\sqrt{5}}{2}\right)^n.\]

Then $f(n+1)-f(n-1)$, expressed in terms of $f(n)$, equals:

$\textbf{(A) }\frac{1}{2}f(n)\qquad\textbf{(B) }f(n)\qquad\textbf{(C) }2f(n)+1\qquad\textbf{(D) }f^2(n)\qquad \textbf{(E) }$ $\frac{1}{2}(f^2(n)-1)$