1964 AHSME Problems/Problem 31
Contents
[hide]Problem
Let
Then , expressed in terms of , equals:
Solution
We compute and , while pulling one copy of the exponential part outside:
Computing gives:
Thus, the answer is .
Solution 2
Notice that and are the characteristics roots for the recurrence relation (think about Binet's formula). And is the solution (i.e. ) to the recurrence relation with constants and . Thus, , and the answer is . -nullptr07
See Also
1964 AHSC (Problems • Answer Key • Resources) | ||
Preceded by Problem 30 |
Followed by Problem 32 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.