Difference between revisions of "2000 AMC 10 Problems/Problem 16"
(→Solution 2) |
Shefroggie (talk | contribs) m (→Solution 2) |
||
Line 121: | Line 121: | ||
<math>m\angle AFE=m\angle BCE=90^\circ</math>, and <math>m\angle AEF=m\angle CEB</math>, so by AA similarity, <cmath>\triangle AFE\sim \triangle BCE \Rightarrow \frac{AF}{AE}=\frac{BC}{BE}</cmath> | <math>m\angle AFE=m\angle BCE=90^\circ</math>, and <math>m\angle AEF=m\angle CEB</math>, so by AA similarity, <cmath>\triangle AFE\sim \triangle BCE \Rightarrow \frac{AF}{AE}=\frac{BC}{BE}</cmath> | ||
− | By the Pythagorean Theorem, we have <math>AB=\sqrt{3^2+6^2}=3\sqrt{5}</math>, <math>AF=\sqrt{2.5^2+2.5^2}=2.5\sqrt{2}</math>, and <math>BC=\sqrt{2^2+2^2} | + | By the Pythagorean Theorem, we have <math>AB=\sqrt{3^2+6^2}=3\sqrt{5}</math>, <math>AF=\sqrt{2.5^2+2.5^2}=2.5\sqrt{2}</math>, and <math>BC=\sqrt{2^2+2^2}=2\sqrt{2}</math>. Let <math>AE=x</math>, so <math>BE=3\sqrt{5}-x</math>, then <cmath>\frac{2.5\sqrt{2}}{x}=\frac{2\sqrt{2}}{3\sqrt{5}-x}</cmath> <cmath>x=\frac{5\sqrt{5}}{3}</cmath> |
This is answer choice <math>\boxed{\text{B}}</math> | This is answer choice <math>\boxed{\text{B}}</math> |
Revision as of 23:02, 14 February 2015
Contents
[hide]Problem
The diagram shows lattice points, each one unit from its nearest neighbors. Segment
meets segment
at
. Find the length of segment
.
Solution
Solution 1
Let be the line containing
and
and let
be the line containing
and
. If we set the bottom left point at
, then
,
,
, and
.
The line is given by the equation
. The
-intercept is
, so
. We are given two points on
, hence we can compute the slope,
to be
, so
is the line
Similarly, is given by
. The slope in this case is
, so
. Plugging in the point
gives us
, so
is the line
.
At , the intersection point, both of the equations must be true, so
We have the coordinates of and
, so we can use the distance formula here:
which is answer choice
Solution 2
Draw the perpendiculars from and
to
, respectively. As it turns out,
. Let
be the point on
for which
.
, and
, so by AA similarity,
By the Pythagorean Theorem, we have ,
, and
. Let
, so
, then
This is answer choice
Also, you could extend CD to the end of the box and create two similar triangles. Then use ratios and find that the distance is 5/9 of the diagonal AB. Thus, the answer is B.
See Also
2000 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 15 |
Followed by Problem 17 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.