Difference between revisions of "1966 AHSME Problems/Problem 4"

m (Solution)
 
Line 7: Line 7:
  
 
Make half of the square's side <math>x</math>. Now the radius of the smaller circle is <math>x</math>, so it's area is <math>\pi x^2</math>.
 
Make half of the square's side <math>x</math>. Now the radius of the smaller circle is <math>x</math>, so it's area is <math>\pi x^2</math>.
Now find the diameter of the bigger circle. Since half of the square's side is <math>x</math>, the full side is <math>2x</math>. Using the Pythagorean theorem, you get the diagonal to be <math>2\sqrt{2}x</math>. Half of that is the radius, or <math>x\sqrt{2}</math>. Using the same equation as before, you get the area of the larger circle to be <math>2x^2 \pi</math>. Putting one over the other and dividing, you get two as the answer: or
+
Now find the diameter of the bigger circle. Since half of the square's side is <math>x</math>, the full side is <math>2x</math>. Using the Pythagorean theorem, you get the diagonal to be <math>2\sqrt{2}x</math>. Half of that is the radius, or <math>x\sqrt{2}</math>. Using the same equation as before, you get the area of the larger circle to be <math>2x^2 \pi</math>. Putting one over the other and dividing, you get two as the answer: or <math>\boxed{(B)}</math>.
 
 
(B)
 
  
 
== See also ==
 
== See also ==

Latest revision as of 21:09, 14 January 2018

Problem

Circle I is circumscribed about a given square and circle II is inscribed in the given square. If $r$ is the ratio of the area of circle I to that of circle II, then $r$ equals:

$\text{(A) } \sqrt{2} \quad \text{(B) } 2 \quad \text{(C) } \sqrt{3} \quad \text{(D) } 2\sqrt{2} \quad \text{(E) } 2\sqrt{3}$

Solution

Make half of the square's side $x$. Now the radius of the smaller circle is $x$, so it's area is $\pi x^2$. Now find the diameter of the bigger circle. Since half of the square's side is $x$, the full side is $2x$. Using the Pythagorean theorem, you get the diagonal to be $2\sqrt{2}x$. Half of that is the radius, or $x\sqrt{2}$. Using the same equation as before, you get the area of the larger circle to be $2x^2 \pi$. Putting one over the other and dividing, you get two as the answer: or $\boxed{(B)}$.

See also

1966 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png