Difference between revisions of "1993 AHSME Problems/Problem 26"

(Created page with "== Problem == Find the largest positive value attained by the function <cmath>f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48} ,\quad x \text{ a real number}</cmath> <math>\text{(A) } \sq...")
 
(Problem)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 
Find the largest positive value attained by the function
 
Find the largest positive value attained by the function
<cmath>f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48} ,\quad x \text{  a real number}</cmath>
+
<cmath>f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48}</cmath> , x a real number.
  
 
<math>\text{(A) } \sqrt{7}-1\quad
 
<math>\text{(A) } \sqrt{7}-1\quad

Revision as of 10:51, 24 April 2016

Problem

Find the largest positive value attained by the function \[f(x)=\sqrt{8x-x^2}-\sqrt{14x-x^2-48}\] , x a real number.

$\text{(A) } \sqrt{7}-1\quad \text{(B) } 3\quad \text{(C) } 2\sqrt{3}\quad \text{(D) } 4\quad \text{(E) } \sqrt{55}-\sqrt{5}$

Solution

$\fbox{C}$

See also

1993 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png