Difference between revisions of "2014 IMO Problems"
m (Created page with "==Problem== A set of lines in the plane is in <math>\textit{general position}</math> if no two are parallel and no three pass through the same point. A set of lines in general po...") |
m |
||
Line 1: | Line 1: | ||
− | ==Problem== | + | |
+ | |||
+ | ==Problem 5== | ||
+ | For each positive integer <math>n</math>, the Bank of Cape Town issues coins of denomination <math>\tfrac{1}{n}</math>. Given a finite collection of such coins (of not necessarily different denominations) with total value at most <math>99+\tfrac{1}{2}</math>, prove that it is possible to split this collection into <math>100</math> or fewer groups, such that each group has total value at most <math>1</math>. | ||
+ | |||
+ | [[2014 IMO Problems/Problem 5|Solution]] | ||
+ | |||
+ | ==Problem 6== | ||
A set of lines in the plane is in <math>\textit{general position}</math> if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its <math>\textit{finite regions}</math>. Prove that for all sufficiently large <math>n</math>, in any set of <math>n</math> lines in general position it is possible to colour at least <math>\sqrt{n}</math> of the lines blue in such a way that none of its finite regions has a completely blue boundary. | A set of lines in the plane is in <math>\textit{general position}</math> if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its <math>\textit{finite regions}</math>. Prove that for all sufficiently large <math>n</math>, in any set of <math>n</math> lines in general position it is possible to colour at least <math>\sqrt{n}</math> of the lines blue in such a way that none of its finite regions has a completely blue boundary. | ||
[[2014 IMO Problems/Problem 6|Solution]] | [[2014 IMO Problems/Problem 6|Solution]] |
Revision as of 04:45, 9 October 2014
Problem 5
For each positive integer , the Bank of Cape Town issues coins of denomination . Given a finite collection of such coins (of not necessarily different denominations) with total value at most , prove that it is possible to split this collection into or fewer groups, such that each group has total value at most .
Problem 6
A set of lines in the plane is in if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its . Prove that for all sufficiently large , in any set of lines in general position it is possible to colour at least of the lines blue in such a way that none of its finite regions has a completely blue boundary.