Difference between revisions of "2014 IMO Problems"

m (Created page with "==Problem== A set of lines in the plane is in <math>\textit{general position}</math> if no two are parallel and no three pass through the same point. A set of lines in general po...")
 
m
Line 1: Line 1:
==Problem==
+
 
 +
 
 +
==Problem 5==
 +
For each positive integer <math>n</math>, the Bank of Cape Town issues coins of denomination <math>\tfrac{1}{n}</math>. Given a finite collection of such coins (of not necessarily different denominations) with total value at most <math>99+\tfrac{1}{2}</math>, prove that it is possible to split this collection into <math>100</math> or fewer groups, such that each group has total value at most <math>1</math>.
 +
 
 +
[[2014 IMO Problems/Problem 5|Solution]]
 +
 
 +
==Problem 6==
 
A set of lines in the plane is in <math>\textit{general position}</math> if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its <math>\textit{finite regions}</math>. Prove that for all sufficiently large <math>n</math>, in any set of <math>n</math> lines in general position it is possible to colour at least <math>\sqrt{n}</math> of the lines blue in such a way that none of its finite regions has a completely blue boundary.
 
A set of lines in the plane is in <math>\textit{general position}</math> if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its <math>\textit{finite regions}</math>. Prove that for all sufficiently large <math>n</math>, in any set of <math>n</math> lines in general position it is possible to colour at least <math>\sqrt{n}</math> of the lines blue in such a way that none of its finite regions has a completely blue boundary.
  
 
[[2014 IMO Problems/Problem 6|Solution]]
 
[[2014 IMO Problems/Problem 6|Solution]]

Revision as of 04:45, 9 October 2014


Problem 5

For each positive integer $n$, the Bank of Cape Town issues coins of denomination $\tfrac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most $99+\tfrac{1}{2}$, prove that it is possible to split this collection into $100$ or fewer groups, such that each group has total value at most $1$.

Solution

Problem 6

A set of lines in the plane is in $\textit{general position}$ if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its $\textit{finite regions}$. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ of the lines blue in such a way that none of its finite regions has a completely blue boundary.

Solution