2014 IMO Problems

Problem 1

Let $a_0<a_1<a_2<\cdots \quad$ be an infinite sequence of positive integers, Prove that there exists a unique integer $n\ge1$ such that \[a_n<\frac{a_0+a_1+\cdots + a_n}{n}\le a_{n+1}.\]

Solution

Problem 2

Let $n\ge2$ be an integer. Consider an $n\times n$ chessboard consisting of $n^2$ unit squares. A configuration of $n$ rooks on this board is $peaceful$ if every row and every column contains exactly one rook. Find the greatest positive integer $k$ such that, for each peaceful configuration of $n$ rooks, there is a $k\times k$ square which does not contain a rook on any of its $k^2$ squares.

Solution

Problem 3

Convex quadrilateral $ABCD$ has $\angle{ABC}=\angle{CDA}=90^{\circ}$. Point $H$ is the foot of the perpendicular from $A$ to $BD$. Points $S$ and $T$ lie on sides $AB$ and $AD$, respectively, such that $H$ lies inside $\triangle{SCT}$ and \[\angle{CHS}-\angle{CSB}=90^{\circ},\quad \angle{THC}-\angle{DTC} = 90^{\circ}.\]

Prove that line $BD$ is tangent to the circumcircle of $\triangle{TSH}.$

Solution

Problem 4

Points $P$ and $Q$ lie on side $BC$ of acute-angled $\triangle{ABC}$ so that $\angle{PAB}=\angle{BCA}$ and $\angle{CAQ}=\angle{ABC}$. Points $M$ and $N$ lie on lines $AP$ and $AQ$, respectively, such that $P$ is the midpoint of $AM$, and $Q$ is the midpoint of $AN$. Prove that lines $BM$ and $CN$ intersect on the circumcircle of $\triangle{ABC}$.

Solution

Problem 5

For each positive integer $n$, the Bank of Cape Town issues coins of denomination $\tfrac{1}{n}$. Given a finite collection of such coins (of not necessarily different denominations) with total value at most $99+\tfrac{1}{2}$, prove that it is possible to split this collection into $100$ or fewer groups, such that each group has total value at most $1$.

Solution

Problem 6

A set of lines in the plane is in $\textit{general position}$ if no two are parallel and no three pass through the same point. A set of lines in general position cuts the plane into regions, some of which have finite are; we call these its $\textit{finite regions}$. Prove that for all sufficiently large $n$, in any set of $n$ lines in general position it is possible to colour at least $\sqrt{n}$ of the lines blue in such a way that none of its finite regions has a completely blue boundary.

Solution

Problem 1

Let $\mathbb{Z}$ be the set of integers. Determine all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that, for all integers $a$ and $b$, \[f(2a) + 2f(b) = f(f(a + b)).\]

Solution

Problem 2

In triangle $ABC$, point $A_1$ lies on side $BC$ and point $B_1$ lies on side $AC$. Let $P$ and $Q$ be points on segments $AA_1$ and $BB_1$, respectively, such that $PQ$ is parallel to $AB$. Let $P_1$ be a point on line $PB_1$, such that $B_1$ lies strictly between $P$ and $P_1$, and $\angle PP_1C=\angle BAC$. Similarly, let $Q_1$ be the point on line $QA_1$, such that $A_1$ lies strictly between $Q$ and $Q_1$, and $\angle CQ_1Q=\angle CBA$.

Prove that points $P,Q,P_1$, and $Q_1$ are concyclic.

Solution

Problem 3

A social network has $2019$ users, some pairs of whom are friends. Whenever user $A$ is friends with user $B$, user $B$ is also friends with user $A$. Events of the following kind may happen repeatedly, one at a time: Three users $A$, $B$, and $C$ such that $A$ is friends with both $B$ and $C$, but $B$ and $C$ are not friends, change their friendship statuses such that $B$ and $C$ are now friends, but $A$ is no longer friends with $B$, and no longer friends with $C$. All other friendship statuses are unchanged. Initially, $1010$ users have $1009$ friends each, and $1009$ users have $1010$ friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.

Solution

Problem 4

Find all pairs $(k,n)$ of positive integers such that

\[k!=(2^n-1)(2^n-2)(2^n-4)\dots(2^n-2^{n-1}).\]

Solution

Problem 5

The Bank of Bath issues coins with an $H$ on one side and a $T$ on the other. Harry has $n$ of these coins arranged in a line from left to right. He repeatedly performs the following operation:

If there are exactly $k > 0$ coins showing $H$, then he turns over the $k^{th}$ coin from the left; otherwise, all coins show $T$ and he stops. For example, if $n = 3$ the process starting with the configuration $THT$ would be $THT \rightarrow HHT \rightarrow HTT \rightarrow TTT$, which stops after three operations.

(a) Show that, for each initial configuration, Harry stops after a finite number of operations.

(b) For each initial configuration $C$, let $L(C)$ be the number of operations before Harry stops. For example, $L(THT) = 3$ and $L(TTT) = 0$. Determine the average value of $L(C)$ over all $2^n$ possible initial configurations $C$.

Solution

Problem 6

Let $I$ be the incenter of acute triangle $ABC$ with $AB \neq AC$. The incircle $\omega$ of $ABC$ is tangent to sides $BC$, $CA$, and $AB$ at $D$, $E$, and $F$, respectively. The line through $D$ perpendicular to $EF$ meets ω again at $R$. Line $AR$ meets ω again at $P$. The circumcircles of triangles $PCE$ and $PBF$ meet again at $Q$. Prove that lines $DI$ and $PQ$ meet on the line through $A$ perpendicular to $AI$.

Solution

2014 IMO (Problems) • Resources
Preceded by
2013 IMO Problems
1 2 3 4 5 6 Followed by
2015 IMO Problems
All IMO Problems and Solutions
Invalid username
Login to AoPS