Difference between revisions of "1989 AHSME Problems/Problem 2"

m
m
 
Line 1: Line 1:
 
 
== Problem ==
 
== Problem ==
  
<math> (-1)^{5^{2}}+1^{2^{5}}= </math>
+
<math> \sqrt{\frac{1}{9}+\frac{1}{16}}= </math>
  
<math> \textrm{(A)}\ -7\qquad\textrm{(B)}\ -2\qquad\textrm{(C)}\ 0\qquad\textrm{(D)}\ 1\qquad\textrm{(E)}\ 57 </math>
+
<math> \textrm{(A)}\ \frac{1}5\qquad\textrm{(B)}\ \frac{1}4\qquad\textrm{(C)}\ \frac{2}7\qquad\textrm{(D)}\ \frac{5}{12}\qquad\textrm{(E)}\ \frac{7}{12} </math>
  
 
== Solution ==
 
== Solution ==

Latest revision as of 06:39, 22 October 2014

Problem

$\sqrt{\frac{1}{9}+\frac{1}{16}}=$

$\textrm{(A)}\ \frac{1}5\qquad\textrm{(B)}\ \frac{1}4\qquad\textrm{(C)}\ \frac{2}7\qquad\textrm{(D)}\ \frac{5}{12}\qquad\textrm{(E)}\ \frac{7}{12}$

Solution

$\sqrt{\frac{1}{9}+\frac{1}{16}}=\sqrt{\frac{25}{9\cdot 16}}=\frac{5}{12}$ and hence the answer is $\fbox{D}$.


See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png