Difference between revisions of "1995 AIME Problems/Problem 7"

 
m
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
 +
Given that <math>\displaystyle (1+\sin t)(1+\cos t)=5/4</math> and
 +
<center><math>(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},</math></center>
 +
where <math>\displaystyle k, m,</math> and <math>n</math> are positive integers with <math>\displaystyle m_{}</math> and <math>\displaystyle n_{}</math> relatively prime, find <math>\displaystyle k+m+n.</math>
  
 
== Solution ==
 
== Solution ==

Revision as of 00:14, 22 January 2007

Problem

Given that $\displaystyle (1+\sin t)(1+\cos t)=5/4$ and

$(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},$

where $\displaystyle k, m,$ and $n$ are positive integers with $\displaystyle m_{}$ and $\displaystyle n_{}$ relatively prime, find $\displaystyle k+m+n.$

Solution

See also