Difference between revisions of "2015 AMC 10B Problems/Problem 23"

Line 14: Line 14:
 
We first look at the case when <math>k!</math> has <math>1</math> zero and <math>(2k)!</math> has <math>3</math> zeros. If <math>k=5,6,7</math>, <math>(2k)!</math> has only <math>2</math> zeros. But for <math>k=8,9</math>, <math>(2k)!</math> has <math>3</math> zeros. Thus, <math>k=8</math> and <math>k=9</math> work.
 
We first look at the case when <math>k!</math> has <math>1</math> zero and <math>(2k)!</math> has <math>3</math> zeros. If <math>k=5,6,7</math>, <math>(2k)!</math> has only <math>2</math> zeros. But for <math>k=8,9</math>, <math>(2k)!</math> has <math>3</math> zeros. Thus, <math>k=8</math> and <math>k=9</math> work.
  
Secondly, we look at the case when <math>k!</math> has <math>2</math> zeros and <math>(2k)!</math> has <math>6</math> zeros. If <math>k=10,11,12</math>, <math>(2k)!</math> has only <math>4</math> zeros. But for <math>k=13,14</math>, <math>(2k)!</math> has <math>6</math> zeros. Thus, the smallest four values of <math>k</math> that work are <math>k=8,9,13,14</math>, which sum to <math>44</math>. The sum of the digits of <math>44</math> is <math>\boxed{\mathbf{(B)\8}}</math>
+
Secondly, we look at the case when <math>k!</math> has <math>2</math> zeros and <math>(2k)!</math> has <math>6</math> zeros. If <math>k=10,11,12</math>, <math>(2k)!</math> has only <math>4</math> zeros. But for <math>k=13,14</math>, <math>(2k)!</math> has <math>6</math> zeros. Thus, the smallest four values of <math>k</math> that work are <math>k=8,9,13,14</math>, which sum to <math>44</math>. The sum of the digits of <math>44</math> is <math>\boxed{\mathbf{(B)\ 8}}</math>
  
 
==See Also==
 
==See Also==
 
{{AMC10 box|year=2015|ab=B|before=Problem 3|num-a=5}}
 
{{AMC10 box|year=2015|ab=B|before=Problem 3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 17:50, 4 March 2015

Problem

Let $n$ be a positive integer greater than 4 such that the decimal representation of $n!$ ends in $k$ zeros and the decimal representation of $(2n)!$ ends in $3k$ zeros. Let $s$ denote the sum of the four least possible values of $n$. What is the sum of the digits of $s$?

$\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }9\qquad\textbf{(D) }10\qquad\textbf{(E) }11$

Solution

A trailing zero requires a factor of two and a factor of five. Since factors of two occur more often than factors of five, we can focus on the factors of five. We make a chart of how many trailing zeros factorials have:

\[\begin{array}{c|c|c|c|c|c|c} \mathrm{Factorial}&0!-4!&5!-9!&10!-14!&15!-19!&20!-24!&25!-29!\\\hline \mathrm{Zeros}&0&1&2&3&4&6 \end{array}\]

We first look at the case when $k!$ has $1$ zero and $(2k)!$ has $3$ zeros. If $k=5,6,7$, $(2k)!$ has only $2$ zeros. But for $k=8,9$, $(2k)!$ has $3$ zeros. Thus, $k=8$ and $k=9$ work.

Secondly, we look at the case when $k!$ has $2$ zeros and $(2k)!$ has $6$ zeros. If $k=10,11,12$, $(2k)!$ has only $4$ zeros. But for $k=13,14$, $(2k)!$ has $6$ zeros. Thus, the smallest four values of $k$ that work are $k=8,9,13,14$, which sum to $44$. The sum of the digits of $44$ is $\boxed{\mathbf{(B)\ 8}}$

See Also

2015 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png