Difference between revisions of "2015 AMC 10B Problems/Problem 22"
(Created page with "Solution Triangle <math>AFG</math> is isosceles so <math>AG</math>=<math>AF</math>=<math>1</math>. Using the symmetry of pentagon <math>FGHIJ</math>, notice that <math>\angl...") |
(Formatting, heavy phrasing edit, added "problem" and "see also" sections, removed "solution by...") |
||
Line 1: | Line 1: | ||
− | + | ==Problem== | |
+ | In the figure shown below, <math>ABCDE</math> is a regular pentagon and <math>AG=1</math>. What is <math>FG + JH + CD</math>? | ||
+ | <asy> | ||
+ | pair A=(cos(pi/5)-sin(pi/10),cos(pi/10)+sin(pi/5)), B=(2*cos(pi/5)-sin(pi/10),cos(pi/10)), C=(1,0), D=(0,0), E1=(-sin(pi/10),cos(pi/10)); | ||
+ | //(0,0) is a convenient point | ||
+ | //E1 to prevent conflict with direction E(ast) | ||
+ | pair F=intersectionpoints(D--A,E1--B)[0], G=intersectionpoints(A--C,E1--B)[0], H=intersectionpoints(B--D,A--C)[0], I=intersectionpoints(C--E1,D--B)[0], J=intersectionpoints(E1--C,D--A)[0]; | ||
+ | draw(A--B--C--D--E1--A); | ||
+ | draw(A--D--B--E1--C--A); | ||
+ | draw(F--I--G--J--H--F); | ||
+ | label("$A$",A,N); | ||
+ | label("$B$",B,E); | ||
+ | label("$C$",C,SE); | ||
+ | label("$D$",D,SW); | ||
+ | label("$E$",E1,W); | ||
+ | label("$F$",F,NW); | ||
+ | label("$G$",G,NE); | ||
+ | label("$H$",H,E); | ||
+ | label("$I$",I,S); | ||
+ | label("$J$",J,W); | ||
+ | </asy> | ||
− | + | ==Solution== | |
− | < | + | Triangle <math>AFG</math> is isosceles, so <math>AG=AF=1</math>. Using the symmetry of pentagon <math>FGHIJ</math>, notice that <math>\triangle IGF \cong \triangle JHG \cong \triangle DIJ \cong AFG</math>. Therefore, <math>JH=AF=1</math>. |
− | From this, we get <math> | + | Since <math>\triangle AJH \sim \triangle AFG</math>, <math>\frac{JH}{AF+FJ}=\frac{1}{1+FG}=\frac{FG}{FI}=\frac{FG}1</math>. From this, we get <math>FG=\frac{\sqrt{5} -1}{2}</math>. |
− | + | Since <math>\triangle DIJ \cong \triangle AFG</math>, <math>DJ=DI=AF=1</math>. Since <math>\triangle AFG \sim ADC</math>, <math> \frac{AF}{AF+FJ+JD}=\frac1{2+FG} = \frac{FG}{CD}=\frac1{CD}</math>. Solving for <math>CD</math>, we get <math>CD = \frac{\sqrt{5} +1}{2}</math> | |
− | < | + | Therefore, <math>FG+JH+CD=\frac{\sqrt5-1}2+1+\frac{\sqrt5+1}2=\boxed{\mathbf{(D)}\ 1+\sqrt{5}\ }</math> |
− | + | ==See Also== | |
− | + | {{AMC10 box|year=2015|ab=B|num-b=20|num-a=22}} | |
− | + | {{MAA Notice}} | |
− | |||
− |
Revision as of 22:48, 16 March 2015
Problem
In the figure shown below, is a regular pentagon and . What is ?
Solution
Triangle is isosceles, so . Using the symmetry of pentagon , notice that . Therefore, .
Since , . From this, we get .
Since , . Since , . Solving for , we get
Therefore,
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.