Difference between revisions of "2015 AMC 10B Problems/Problem 24"
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Aaron the ant walks on the coordinate plane according to the following rules. He starts at the origin <math>p_0=(0,0)</math> facing to the east and walks one unit, arriving at <math>p_1=(1,0)</math>. For <math>n=1,2,3,\dots</math>, right after arriving at the point <math>p_n</math>, if Aaron can turn <math>90^\circ</math> left and walk one unit to an unvisited point <math>p_{n+1}</math>, he does that. Otherwise, he walks one unit straight ahead to reach <math>p_{n+1}</math>. Thus the | + | Aaron the ant walks on the coordinate plane according to the following rules. He starts at the origin <math>p_0=(0,0)</math> facing to the east and walks one unit, arriving at <math>p_1=(1,0)</math>. For <math>n=1,2,3,\dots</math>, right after arriving at the point <math>p_n</math>, if Aaron can turn <math>90^\circ</math> left and walk one unit to an unvisited point <math>p_{n+1}</math>, he does that. Otherwise, he walks one unit straight ahead to reach <math>p_{n+1}</math>. Thus the sequence of points continues <math>p_2=(1,1), p_3=(0,1), p_4=(-1,1), p_5=(-1,0)</math>, and so on in a counterclockwise spiral pattern. What is <math>p_{2015}</math>? |
<math> \textbf{(A) } (-22,-13)\qquad\textbf{(B) } (-13,-22)\qquad\textbf{(C) } (-13,22)\qquad\textbf{(D) } (13,-22)\qquad\textbf{(E) } (22,-13) </math> | <math> \textbf{(A) } (-22,-13)\qquad\textbf{(B) } (-13,-22)\qquad\textbf{(C) } (-13,22)\qquad\textbf{(D) } (13,-22)\qquad\textbf{(E) } (22,-13) </math> | ||
+ | |||
+ | ==Solution== | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2015|ab=B|num-b=19|num-a=21}} | {{AMC10 box|year=2015|ab=B|num-b=19|num-a=21}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 22:29, 17 March 2015
Problem
Aaron the ant walks on the coordinate plane according to the following rules. He starts at the origin facing to the east and walks one unit, arriving at . For , right after arriving at the point , if Aaron can turn left and walk one unit to an unvisited point , he does that. Otherwise, he walks one unit straight ahead to reach . Thus the sequence of points continues , and so on in a counterclockwise spiral pattern. What is ?
Solution
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.